• Title/Summary/Keyword: Droplet Atomization

Search Result 330, Processing Time 0.023 seconds

Investigation on the Sauter Mean Diameter of an Air-Assisted Fuel Injector -Operating Parameter Consideration (운전조건에 따른 공기보조 분사기의 Sauter 평균입경에 대한 고찰)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.42-50
    • /
    • 2000
  • Drop size distribution of an air-assisted fuel injector(AAFI) was investigated. Influence of parameters such as ambient air density supply pressure and air-liquid mass ratio(ALR) was examined through both measurement and analysis. The Sauter mean diameter$D_{32}$ varied from 9 to 25$\mu$m throughout all experimental conditions. An empirical correlation for droplet size was obtained. Analytical correlations for predicting $D_{32}$ with respect to operating conditions were also derived through energy consideration and introduction of a simplified model of the from the empirical fitting was adapted to the original equation the proposed correlation in this study matched more closely with measured results. The current correlation exhibited a favorable study matched more closely with measured results. The current correlation exhibited a favorable prediction for $D_{32}$ compared to that by the empirical correlation at selected experimental conditions so that it may be used to predict atomization performance of the AAFI at operating conditions which was not covered in the measurements. After validation the analytical equation was applied to survey the feasible operating conditions for gasoline direct injection application.

  • PDF

Characteristics of Internal Flow and Fuel Spray in a Fuel Nozzle Orifice (연료노즐의 내부유동 및 외부분무 특성)

  • Hong, S.T.;Park, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 1996
  • The nozzle geometry and up-stream inject ion condition affect the characteristics of flow inside the nozzle. such as turbulence and cavitation bubbles. Flow details in fuel nozzle orifice with sudden contraction of cross sectional area have been investigated both experimentally and numerically. The measurements of velocities of internal flow in a scaled-up nozzle with different length to diameter rat io(L/d) were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The turbulent intensity and turbulence kinetic energy in a sharp inlet nozzle were higher than that in a round inlet nozzle. Calculations were also performed for the same nozzles as scaled-up experimental nozzles using the SIMPLE algorithm. External spray behavior under different nozzle geometry and up-stream flow conditions using Doppler technique and visualization technique were also observed.

  • PDF

A Study on the Distribution of Cylindrical Disk Spray by a Impinging Disk (충돌판에 의한 원판형 분무의 공간분포에 관한 실험적 연구)

  • 차건종;김덕줄
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.251-262
    • /
    • 1995
  • The goal of this study is to provide fundamental information on the design of a new diesel injector system. The cylindrical disk spray was made by an impinging disk insited below the exit of air-assist atomizor. The disintegration processes on a twin-fluid atomization by air-assist atomizor were investigated. Liquid jet was disintegrated at the condition that wavelength was equal and longer than the circumference of the liquid jet, .lambda. .geq. .pi.do. However, the wavelength and the diameter of the liquid jet were decreased according to the increasing of air velocity. The relative density distribution of droplets and pattern of spray by impinging disk were investigated with a C-CCD. Optimum design conditions for cylindrical disk spray were also achieved. The pattern of cylindrical spray can classified according to the size of the disk and the distance from the nozzle tip to the disk. When the space of the disk and the nozzle tip was narrow and the diameter of the disk was larger than that of the air orifice of the nozzle exit, the good distribution of spray could be achieved. When the air flowrate was constant, the spray width was decreased according to the increasing of the liquid flowrate. When the liquid flowrate was constant, the spray width was decreased according to the increasing of the air flowrate.

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

Investigation on the DeNOx Efficiency in Urea-SCR System at Various Operating Conditions and Injection Characteristics for a Passenger Diesel Engine (승용디젤엔진의 운전 조건 및 분사 조건 변경에 따른 Urea-SCR 시스템의 NOx 전환효율에 관한 연구)

  • Hong, Kil-Hwa;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.952-960
    • /
    • 2009
  • Selective Catalytic Reduction (SCR) system is a high-effective NOx reduction technology in diesel engines. As the emission standard of diesel engines is more stringent, vehicle manufactures makes efforts on emission technologies. This paper discusses the performance of Urea-SCR system according to the engine operating conditions in a passenger diesel engine. Engine test results in this paper show that it is important to consider the catalyst temperature and space velocity to obtain high NOx conversion efficiency. In condition of high catalyst temperature, over 90% NOx conversion efficiency is indicated. However, when catalyst temperature is low, NOx conversion efficiency was decreased. Also, it was shown that space velocity mainly effects on the DeNOx performance under 220 degree celsius of SCR catalyst temperature. As the urea injection pressure was decreased, NOx conversion efficiency was declined. It is concerned about urea droplet atomization. This work shown in this paper can lead to improved overall NOx conversion efficiency.

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine (RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구)

  • Kang, P.J.;Kim, H.M.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF