• Title/Summary/Keyword: Drop transfer

Search Result 862, Processing Time 0.021 seconds

Experiment on condensation heat transfer and pressure drop characteristics in the multi-channel flat tube (다채널 편평관의 응축 열전달 및 압력강하특성에 관한 실험)

  • Jeon, C.D.;Chung, J.W.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.376-388
    • /
    • 1997
  • In this study, an experiment was performed to investigate the characteristics of pressure drop and heat transfer of multi-channel tubes for automotive condenser using HFC-134a as an alternative refrigerant. The mass flux and inlet saturation pressure of the refrigerant were controlled, respectively, in the range of 200 to $500kg/m^2s$ and 1.0 to 1.6MPa. Pressure drop and heat transfer coefficient were compared with the previously proposed correlations and new correlations based on Traviss' correlation were suggested. Prediction of pressure drop and heat transfer coefficient based on the new correlations agrees with experimental results within ${\pm}9%$ and -18~+11%, respectively.

  • PDF

A Study on the Metal Transfer Considering Fluid Flow in GMAW (가스 메탈 아크 용접에서 유체 유동을 고려한 금속 이행에 관한 연구)

  • 박기영;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.148-155
    • /
    • 1998
  • It is commonly known that, in GMAW, the characteristics of metal transfer and the size of molten drop are highly dependent on the welding current. These changes in the characteristics of metal transfer has a considerable effect on the weld quality, and a lot of studies have been made on metal transfer modes for that reason. In this study, two cases were investigated; the one in which the metal transfer proceeds with gravitational force, surface tension, and no electromagnetic force, and the other in which the process has electromagnetic term in addition, where the current density in the fluid has been assumed to have Gaussian distribution on any given cross-section and it acts vertically. Using fluid flow analysis, this study has observed the whole process of the development and break-up of the molten drop, and it also showed that transitional processes, drop rate, and the drop size in each metal transfer mode can be estimated.

  • PDF

Characteristics of Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide and Correlation Development near the Critical Point (임계점 부근에서 이산화탄소의 증발열전달 및 압력강하 특성 연구와 상관식 개발)

  • 윤석호;조은석;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.530-537
    • /
    • 2004
  • In recent years, carbon dioxide among natural refrigerants has gained consider-able attention as an alternative refrigerant due to its excellent thermophysical properties. However, few investigations have been performed to develop useful correlations of heat trans-fer coefficients and pressure drop during evaporation of carbon dioxide. This study is aiming at providing the characteristics of heat transfer and pressure drop during the evaporation process of carbon dioxide. Heat is provided by a direct heating method to the test section, which was made of a seamless stainless steel tube with an inner diameter of 7.53 mm, and a length of 5.0 m. Experiments were conducted at saturation temperatures of -4 to 2$0^{\circ}C$, heat fluxes of 12 to 20 ㎾/$m^2$ and mass fluxes of 200 to 530 kg/$m^2$s. A comparison of different heat transfer correlations applicable to evaporation of carbon dioxide has been made. Based on the experiments for evaporation heat transfer and pressure drop, new correlations were developed. The newly developed empirical correlations for the heat transfer and pressure drop show average absolute deviations of 15.3% and 16.2%, respectively.

Theoretical Study on the Heat Transfer Performance in the Various Type Plate Heat Exchanger (다양한 형상의 판형 열교환기 열전달 성능에 관한 해석적 연구)

  • Oh, Jae-Kyeong;An, Sung-Kook;Nam, Snag-Chul;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.636-645
    • /
    • 2012
  • The performance of various type plate exchangers with different chevron angle, dimple size and arrangement was analysed by using Ansys v13.0. Heat transfer performance, pressure drop and flow patten of plate heat exchanger were investigated according to mass flow ratio investigated and compared. As a result, the $60^{\circ}$-chevron type plate heat exchanger showed the highest heat transfer performance but pressure drop was relatively high. The efficiency of $45^{\circ}$-chevron type plate heat exchanger showed the best performance in considering of heat transfer performance and pressure drop simultaneously. Among dimple type plate heat exchangers, the highest heat transfer performance was shown in a dim_zigzag type plate heat exchanger but pressure drop was very high. Besides, the dim_upsize plate heat exchanger showed very low pressure drop.

Study on Condensation Heat Transfer and Pressure Drop Characteristics of R-22 in Brazed Plate Heat Exchanger (R-22를 사용한 용접형 판형 열교환기의 응축열전달 및 압력강하 특성에 관한 연구)

  • Jeon, Chang-Deok;Gwon, O-Gap;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2001
  • Experimental study has been carried out on the characteristics of pressure drop and heat transfer of brazed plate heat exchangers using R-22. Data are presented for the following range of variables: the mass flux (40∼90kg/$m^2$s), chevron angle ($20^{\circ}$, $35^{\circ}$, $45^{\circ}$) and inlet pressure of the refrigerant (1.4 and 1.6MPa). For both subcooled and two-phase flow, as chevron angle increases, pressure drop and heat transfer coefficient decrease. Condensation heat transfer coefficient and pressure drop were compared with the previously proposed correlations. Among therm, Traviss correlation agreed with experimental results within -40%∼-84% for heat transfer coefficient and -59%∼62% for pressure drop.

Experimental of Study on Heat Transfer and Pressure drop of PF Heat Exchangers (PF 열교환기의 열전달과 압력강하 특성 실험 연구)

  • Um, Y.S.;Seo, D.N.;Park, K.M.;Lee, S.J.;Kim, D.H.;Kwon, Y.C.
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.519-524
    • /
    • 2008
  • In the present study, the air-side heat transfer and pressure drop characteristics of the fin-tube and PF heat exchangers have been experimentally investigated under the cooling standard condition. Fin type of PF heat exchanger is a triangler and squarer form. The experimental data of the slit fin-tube and two kinds of PF heat exchangers are measured using the air-enthalpy calorimeter and the constant temperature water bath. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. The heat transfer rate and pressure drop of PF-2 heat exchanger of the squarer fin is larger than that of PF-1 heat exchanger of the triangler fin. As the inlet air temperature increases, the heat transfer rate decreases and the pressure drop is nearly uniform.

  • PDF

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

A-Study on The Heat Transfer Performance of Evaporator Heat Transfer Tube for Absorption Chiller (흡수식 냉온수기 증발기용 전열관의 전열성능에 관한 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the heat transfer tube for an evaporator of absorption system applications. Five types of heat transfer tubes with different shape and heat transfer area are tested in the present experiment. Heat transfer and pressure drop performance of heat transfer tubes are measured in various operating conditions, and compared each other. The results show that the heat transfer coefficient of thermoexcel notch tube increases about 79.6% and 45.3% at the film Reynolds number 69.7 compared with that of bare tube and low fin tube, respectively. The thermoexcel notch tube is show the best performance considering pressure drop and heat transfer coefficient.

An Experimental Study on the Pressure Drop and Heat Transfer Performance in Tubes with Three Dimensional Roughness (삼차원 조도관의 압력손실 및 열전달 성능에 대한 실험적 연구)

  • Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.276-286
    • /
    • 1995
  • In this study, pressure drop and heat transfer coefficients were measured in tubes with three dimensional roughness. Dimples were made by rotating the saw-tooth shaped finning disc on the outer tube surface. Resultant dimple shape was oval. Friction and heat transfer tests were performed with a range of roughness variables-roughness height 'e', axial roughness pitch 'p', circumferential roughness pitch 'z'. Within the test range, tube with e=0.5mm, z=5mm, p=3mm performed best. The efficiency ratio(rati of the heat transfer improvement and the pressure drop increase) of the tube approached 1.0 at low Reynolds number, and it was higher than that of the two-dimensional roughess tube of the same roughness height. Test data were predicted by 'discrete element method'. Results show that discrete element method underpredicts the friction data by 2% to 32%, and overpredicts the heat transfer data by-12% to 113%.

  • PDF

Fluid Flow and Convective Heat Transfer Characteristics of Al2O3 Nanofluids (알루미나 나노유체의 유동 및 대류 열전달 특성)

  • Hwang, Kyo-Sik;Lee, Ji-Hwan;Lee, Byeong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.16-20
    • /
    • 2007
  • In this paper, convective heat transfer and flow characteristics of $Al_2O_3$ nanoparticles suspended in water flowing through uniformly heated tubes are experimentally investigated under laminar flow regime. The heat transfer coefficient and the pressure drop of nanoparticles suspended in water are experimentally presented according to the pumping power. In addition, the heat transfer coefficient and the pressure drop of $Al_2O_3$ nanoparticles suspended in water are compared with those of pure water under the fixed pumping power. It is shown that the heat transfer coefficient of $Al_2O_3$ nanofluids with 0.1% volume fraction is enhanced by about 12% although the increment of the pressure drop of those is 4% compared with those of pure water.