• 제목/요약/키워드: Droop Control

검색결과 132건 처리시간 0.023초

DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발 (Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid)

  • 김연우;권민호;박성열;김민국;양대기;최세완;오성진
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

정상상태 판별을 이용한 고전압 직류전원장천의 Wireless 병렬 운전 (Wireless parallel operation of high voltage DC power supply using steady-state estimation)

  • 손호섭;백주원;유동욱;김장목;김흥근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.208-211
    • /
    • 2003
  • This paper presents an improved droop method of the high voltage DC power supply which minimizes the voltage droop of a parallel-connected power supply. Conventionally, the droop method has been used to achieve a simple structure and no-interconnections among the power sources. However, it has a trade-off between output voltage regulation and load sharing accuracy. In this paper, the droop is minimized with a current and droop gain control using steady-stage estimation. The proposed method can achieve both high performance voltage regulation and load sharing. Two 10kV, 100mA parallel power modules were made and tested to verify the proposed current-sharing method.

  • PDF

DC 마이크로그리드의 배전 손실 최소화를 위한 새로운 드룹 제어 기법 (A Novel Droop Control Method to Minimize Distribution Loss in DC Microgrid)

  • 김석웅;최시영;김래영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.371-372
    • /
    • 2015
  • Dc microgrid has the advantage of high efficiency as compared to the ac system. Droop method has been realized to suppress the current mismatching among the distributed sources. However, this method involves distribution loss due to the line impedance. In this paper, a novel droop method is proposed to minimize the distribution loss as well as the voltage deviation by adjusting the droop coefficient. The proposed droop method is verified by using the simulation based on PSCAD/EMTDC.

  • PDF

Droop Control을 적용한 BESS 병렬운전 제어 알고리즘 (A parallel control algorithm using droop control for Bess Energy Storage System(BESS))

  • 오승진;김태형;권병기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.131-132
    • /
    • 2013
  • BESS를 대용량화 하기 위하여 병렬운전에 관련하여 많은 연구가 진행 중이다. 병렬운전 알고리즘의 제어 목표는 인버터 간의 순환전류를 제거하고, 부하 분담이 균등하게 하는 것에 있다. 이를 위하여 연구되었던 방법 중 전압 제어와 전류 제어의 인버터를 결합한 Master-Slave 방식은 통신을 통하여 정확한 부하분담이 가능하지만 통신지연 발생시 과도상태에 과전류가 발생 할 수 있다는 단점을 갖는다. 본 논문은 독립된 계통에서 BESS가 병렬운전 중 스텝부하 투입시 통신지연 시간 동안의 과도상태에서 과전류가 발생하지 않도록 하는 Droop Control를 적용한 제어 알고리즘을 제안한다.

  • PDF

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

Comparison of Dynamic Characteristics between Virtual Synchronous Machines Adopting Different Active Power Droop Controls

  • Yuan, Chang;Liu, Chang;Zhang, Xueyin;Zhao, Tianyang;Xiao, Xiangning;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.766-776
    • /
    • 2017
  • In modern power systems, high penetration of distributed generators (DGs) results in high stress on system stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method named virtual synchronous machine (VSM) was proposed, which brought new characteristics to inverters such as synchronous machines (SMs). In addition, different active power droop controls for VSMs are being proposed in literatures. However, they are quite different in terms of their dynamic characteristics despite of the similar control laws. In this paper, mathematical models of a VSM adopting different active power droop controls are built and analyzed. The dynamic performance of the VSM output active power and virtual rotor angular frequency are presented for different models. The influences of the damping factor and droop coefficient on the VSM dynamic behaviors are also investigated in detail. Finally, the theoretical analysis is verified by simulations and experimental results.

Voltage and Frequency Droop Control for Accurate Power Sharing of Parallel DG Inverters in Low Voltage Microgrid

  • Nguyen, Tien Hai;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.95-96
    • /
    • 2016
  • This paper presents a voltage and frequency droop control for accurate power sharing of parallel distributed generation (DG) inverters in low voltage microgrid. In practice, line impedances between inverters and the point of common coupling of a microgrid are not always equal. This inequality in line impedances often results in reactive power sharing mismatch among inverters. To address this problem, intensive researches have been conducting. Although these methods can solve the unbalanced reactive power sharing, there are still problems remain unresolved, such as complicated structure or circulating current. To overcome such problems, a new droop control scheme is proposed, which not only guarantees accurate reactive power sharing but also has simple structure so that it can be easily implemented in existing systems without any hardware modification. The simulation is performed using Matlab/Simulinks to validate the proposed scheme.

  • PDF

Accurate Power Sharing in Proportion for Parallel Connected Inverters by Reconstructing Inverter Output Impedance

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1751-1759
    • /
    • 2018
  • This paper presents parallel-connected inverters to achieve accurate proportional power sharing. Due to line impedance mismatch, reactive power cannot be distributed proportionally when using the conventional $P-{\omega}$ and $\mathcal{Q}-E$ droop. In order to realize reactive proportional power sharing, the ratio of the droop coefficients should be inversely proportional to their power-sharing ratios. Meanwhile, the ratio of the line impedance should be inversely proportional to the desired power-sharing ratio, which is very difficult to be met in practice. In order to deal with this issue, a practical control strategy is presented. By measuring the PCC voltage and using the virtual impedance, the output impedance of individual inverters is reconstructed to counteract the line impedance effect. In order to guarantee system stability, a low pass filter is designed to suppress the bandwidth of the line compensation. Finally, the simulation and experimental results are given to verify the effectiveness of the proposed control strategy.

직류급전 시스템의 Autonomous Operation을 위한 교류연계장치와 에너지 저장의 Droop Control (A Droop Control for the Autonomous Operation of DC Distribution System using Grid-tied Converter and Energy Storage)

  • 이지헌;차민영;한병문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.32-33
    • /
    • 2010
  • This paper describes a droop control method for the autonomous operation of DC distribution system using distributed generations and energy storage. The method suppress the circulating current, and each unit could be controlled autonomously without communication system. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation and battery was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The simulation and experimental results confirms that the proposed DC distribution system make it feasible to provide power to the load stably and verify effectiveness of the proposed method.

  • PDF

철도 차량용 보조전원장치의 병렬 운전을 위한 가상 임피던스 기반의 드룹 제어 (A Modified Droop Control Method for Parallel Operation in Railway Auxiliary Power Supply Based on Virtual Impedance)

  • 안창균;최봉연;강진욱;강경민;이훈;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.342-343
    • /
    • 2019
  • This paper explores the power distribution problem of parallel-connected inverter system which supplies auxiliary power for railway facilities. We propose a droop control method which facilities power distribution and restrain of voltage drop by tracking the average power control command by adjusting the virtual impedance. The performance of proposed droop method is verified by the PSIM simulation.

  • PDF