• 제목/요약/키워드: Driving torque

검색결과 623건 처리시간 0.021초

전동력설비의 운전에 의해 발생되는 자계의 측정과 해석 (Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations)

  • 이복희;길경석
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권2호
    • /
    • pp.58-67
    • /
    • 1995
  • 본 논문은 유도전동기의 운전조작시에 발생되는 자계변화특성에 대하여 기술하였다. 본 측정시스템은 자기적분형 자계센서, 증폭기, 능동형 적분기로 이루어졌으며, 교정실험에 대한 측정계의 주파수대역과 감도는 각각 20[Hz]~0.234[mV/$\mu$T]이다. 유도전동기의 기동과 정상운전중에 발생하는 자계성분을 측정하였으며, 고조파 성분을 고속 푸리에 변환기법으로 분석하였다. 유도전동기의 직입기동시에는 단일성 펄스자계가 강하게 발생하였으며, 이의 피크치는 정상상태의 값보다 5배이상 크게 나타났다. 이러한 긴 과도시간과 강한 자계의 세기는 전동기의 큰 인덕턴스와 동특성에 기인된다. 유도전동기의 정상운전시에는 유도전동기의 극수에 의존하는 기본파에 대한 분조파의 자계성분이 관측되었다. 또한, 자계의 분조파 성분은 전동기의 토크 변동으로 불균일한 회전토크로 인해 생기는 맥동전류와 전압플리커에 의해서 발생하는 것으로 생각된다. 인버터구동형 유도전동기에서는 직입기동에 비하여 많은 고조파 성분이 발생되고 있었으며, 특히 전동기의 구동주파수가 낮을수록 맥동토크에 의한 전류변화로 고조파 성분은 더욱 증가하였다.

  • PDF

토양 조건에 따른 농업용 트랙터의 견인 성능 분석 (Analysis of Traction Performance for Agricultural Tractor According to Soil Condition)

  • 이남규;김용주;백승민;문석표;박성운;최영수;최창현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

평행식 진동탄환 암거 천공기의 연구 (IV)(V)-실기 설계 제작 및 보장실험-Development of Balanced-Type Oscillating Mole Drainer(IV)(V)

  • 김용환;이승규;서상용
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.7-24
    • /
    • 1977
  • This paper is the forth and fifth one of the study on balanced type oscillating mole drainer. In the light of the results from previous reports about the model tests, some design criteria were established and a prototype machine was set up for experimental purpose. Motion characteristics and functionof the each parts of the machine were checked and analyzed. After that, performance tests of the prototype machine were carried out in thefield. Obtained results are summarized as follows ; 1. Ten centimeter of the bullet diameter was determined so as to be able to attach it to the tractors with capacity of 30 PS to 40 PS. 2. To maintain the balance between the moments of the front shank and rear shank, the oscillating amplitude of the rear bullet was determined to be larger than that of the front bullet. At the same time , the oscillating direction of the rear bullet was designed with the inclines of ten to thirty degrees. 3. An octagonal dynamo transduced was developed for measuring the compressive force of the upper link is measuring the draft force of the machine. Acceptable linear relationship between forces and strain responses from O.D.T. was obtained. 4. Analysing the balancing mechanism of the acting part of the machine , it was found that the total draft force of the machine was equal to the difference between the sum of the draft force produced from the right and left side bending moments of the lower drawber and the compressive force on the upper link. 5. There are acceptable linear relationship between the strain and twisting moment by driving shaft, and between strain and shank moment. Above results enable us to carry out the field experiment with prototype machine. 6. When the test machine was used in the field, it was possible to reduce the oscillating acceleration by forty percent in average as compared it with the single bullet mole drainer. 7. When the test machine was used under the oscillating condition, the dratt torce was reduced by 27 percent to 59 percent as compared it with the test machine under non-oscillating condition, while the draft force was increased by 7 percent to 20 percent as compared it with the mole drainer having oscillating single bullet. The reasoning behind this fact was considered as the resistance force due to the rear shank and bullet. 8. As the amplitude and frequency of the bullet were increased, the torque was increased accordingly. This tendency could be varied with the various characteristics of the given soils. And the larger frequency and amplitute, the more increasing oscil\ulcornerlating power but decreasing draft brce were needed, and draft force was increased as the velocity was increased.9. When the amplitude of the rear bullet was designed to be larger than that of the front bullet, the minimum value of the moment was lowered and oscillating acceleration was reduced. And when the oscillating direction of the rear bullet was declined back\ulcornerwards, oscillating acceleration was increased along with the increasing angle of decli\ulcornernation. When the test machine was operated in high speed, the difference between maximum moments and minimum ones became narrow. This varying magnitude of moments appeared on the moment oscillogram seems to be correlated to the oscillating acceleration and draft force. 10. From the analysis of variance, it was found that those factors such as frequency, amplitude, and operating velocity significantly affected in the oscillating acceleration, the draft resistance, the torque, the moment, and the total power required. And interaction between frequency and amplitude affected in the oscillating acceleration. 11. Within the given situation of this study, the most preferable operating conditions of the test machine were 7 Hz in oscillating frequency, 0.54 m/sec in operating velocity, and 39.1 mm in oscillating amplitude of front and rear bullets. However, it is necessary to select the proper frequency and magnitude of oscillation depending on the soil properties of the field in which the mole drainer is practiced by use of a bal1nced type oscillating mole drainer. 12. It is recommended that a comparative study of the mole drainers would be performed in the near future using two separate balanced oscillating bullet with the one which is operated by oscillating the movable bullet in a single cylinder or other balanced type which may be single oscillating bullet with spring, damper or balancing weight, and that of thing. To expand the applicability of the balanced type oscillating mole drainer in practical use, it is suggested to develop a new mechanism which perform mole drain with vinyl pipe or filling material such as rice hull.

  • PDF