• 제목/요약/키워드: Driving system

검색결과 4,606건 처리시간 0.034초

Driving with an Adaptive Cruise Control System

  • Nam, Hyoung-Kwon;Lee, Woon-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.717-722
    • /
    • 2003
  • A driving simulator is a computer-controlled tool to study an interface between a driver and vehicle response by enabling the driver to participate in judging vehicle characteristics. Using the driving simulator, human factor study, vehicle system development and other research can be effectively done under controllable, reproducible and non-dangerous conditions. An Adaptive Cruise Control (ACC) system is generally regarded as a system that can be achieved in the near future without the demanding infrastructure components and technologies. ACC system is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. And the influence of the driver is substantial in developing the system. Driving characteristic is very different according to the accident riskiness, gender, age and so on. In this research, experiments have been carried out to investigate driving characteristics with the ACC system, using a driving simulator. Participants are 21 male and 19 female. Driving characteristics such as preferred headway-time, lane keeping ability, eye direction, and head movement have been observed and compared between the driving with ACC and the driving without ACC.

  • PDF

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

안전운전 관리시스템 개발 (Development of a Safe Driving Management System)

  • 조준희;이운성
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.71-77
    • /
    • 2007
  • Dangerous driving is a major cause of traffic accidents in Korea. It becomes more serious for commercial vehicles due to higher fatality rates. The Safe Driving Management System (SDMS), developed in this research, is a comprehensive solution that monitors and stores driving conditions of vehicles, detects dangerous driving situations, and analyzes the results in real time. The Safe Driving Management System consists of a vehicle movement information controller, a dangerous driving detection algorithm and a vehicle movement data report and analysis program. The dangerous driving detection algorithm detects and classifies dangerous driving conditions into representative cases such as sudden acceleration, sudden braking, sudden lane change, and sudden turning. Both computer simulation and vehicle test have been conducted to develop and verify the algorithm. The Safe Driving Management System has been implemented on commercial buses to verify its reliability and objectivity. It is expected that the system can contribute to prevention of traffic accidents, systemization of safe driving management and reduction of commercial vehicle operation costs.

차량 주행 감각 재현을 위한 운전 시뮬레이터 개발에 관한 연구 (I) (A study on the Development of a Driving Simulator for Reappearance of Vehicle Motion (I))

  • 박민규;이민철;손권;유완석;한명철;이장명
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.90-99
    • /
    • 1999
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. The driving simulator is used effectively for studying interaction of a driver-vehicle and developing vehicle system of a new concept. The driving simulator consists of a vehicle motion bed system, motion controller, visual and audio system, vehicle dynamic analysis system, cockpit system, and etc. In it is paper, the main procedures to develop the driving simulator are classified by five parts. First, a motion bed system and a motion controller, which can track a reference trajectory, are developed. Secondly, a performance evaluation of the motion bed system for the driving simulator is carried out using LVDTs and accelerometers. Thirdly, a washout algorithm to realize a motion of an actual vehicle in the driving simulator is developed. The algorithm changes the motion space of a vehicle into the workspace of the driving simulator. Fourthly, a visual and audio system for feeling higher realization is developed. Finally, an integration system to communicate and monitor between sub systems is developed.

  • PDF

연약갯벌 차량용 주행장치 개발에 관한 연구 (Study on Driving System for Tidal Flat Vehicle)

  • 여태경;홍섭;김형우;최종수
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.72-78
    • /
    • 2010
  • This paper presents a design approach of driving system for tidal flat vehicle. Firstly, topographic and geological survey of tidal flat zone was accomplished. 'Anac' located in the west-south coast of South Korea was chosen for the survey area. From the survey, the basic design data such as distribution of gullies size and bearing pressure was obtained. To figure out the shape of driving system, numerical simulations were carried out. Through the numerical dynamic simulations using $Recurdyn^{TM}$, the performance of various concepts of driving system was analyzed. From the results, we propose the conceptual design with the functions: a) low contact pressure, b) powerful driving force transmission, c) adaptation to the ground undulation. To satisfy these functional requirements, the driving system adopts rubber tracks, sprockets, tires and suspensions. The static structural analysis of the frame structure was executed as well, from which the detailed design was drawn out. To validate the performance of the designed driving system, the test vehicle which has gasoline engine of 27HP and mechanical transmission was constructed. The driving tests of the vehicle were performed twice at the "Anac" area, and unveiled its capability.

스마트폰 센서스트림을 이용한 운전 패턴 인식 시스템 (Driving Pattern Recognition System Using Smartphone sensor stream)

  • 송충원;남광우;이창우
    • 한국산업정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.35-42
    • /
    • 2012
  • 운전자의 도로 주행 데이터를 데이터베이스화한 정보는 다양하게 이용될 수 있다. 이러한 주행 정보를 이용한다면 운전자의 운전 성향을 분석하는데 도움이 될 것이다. 따라서 본 논문에서는 스마트폰을 이용하여 도로 주행 시의 센서 데이터들을 기록하고 주행 패턴을 인식하는 방법을 제안한다. 운전 성향을 분석하기에 앞서 패턴 별 주행 정보를 제공하기 위해 주행 패턴을 인식하는데 중점을 두었다. 좌회전, U턴, 우회전, 급감속, 급출발, 급가속, 과속방지턱에 해당하는 7개의 패턴을 인식하기 위한 과정으로 데이터 전처리를 통해 이벤트가 발생한 구간을 검출 후, DTW(Dynamic Time Warping) 알고리즘을 이용한 결정 방식을 적용하여 패턴을 인식한다. 제안된 방법은 운전자의 정보 제공을 위해 인식된 패턴과 함께 동시에 녹화된 비디오 스트림도 제공되며, 이는 안전운전시스템이나 운전습관분석시스템의 중요한 요소라 할 수 있다.

적응순항제어시스템의 운전자 행동적응 (Behavioral Adaptation to an Adaptive Cruise Control System)

  • 이운성;김영석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.82-88
    • /
    • 2006
  • The study investigated how an adaptive cruise control system induced behavioral adaptation in drivers using a full-scale driving simulator. Forty drivers with different driving styles participated in the study to compare headway-time, vehicle lateral position variation, and head and eye movement when driving with and without the adaptive cruise control system. Results showed that system induced positive behavioral adaptation by drawing consistency in driving speed and headway-time regardless of the driving styles. However, the results also showed that the drivers' reliance on the system induced negative adaptation including reduced lane keeping ability and reduced attention during driving. As a strategy to prevent negative adaptation, the study proposed information service to drivers with the adaptive cruise control system status and driving environment, and investigated effectiveness of the service. Twelve drivers participated in the experiment to compare headway-time, vehicle lateral position variation and subjective ratings when driving with and without the information service. Results showed that the information service assisted the drivers to maintain safer and more comfortable headway-time without impairing drivers' steering ability.

실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발 (Development of Vehicle Environment for Real-time Driving Behavior Monitoring System)

  • 김만호;손준우;이용태;신승헌
    • 대한인간공학회지
    • /
    • 제29권1호
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

차량 시물레이터의 운전석 시스템 개발 (Development of a Driving Operation System for Vehicle Simulator)

  • 유성의;박민규;유기성;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.291-291
    • /
    • 2000
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. Driving Operation System acts as an interface between a driver and a driving simulator. This paper suggests the driving operation system for a driving simulator. This system consists of a controller, DC geared motor, MR brake, rotary encoders, steeping motor and bevel gear box. Reaction force and torque on the steering system were made by DC_Motor and MR_Brake. Reaction force and torque on the steering system were compare between real car and a driving simulator. The controller based on the 80C196KC micro processor that manage and transfer signal.

  • PDF

ATO 시스템 전동차의 ECO 운행패턴 적용에 관한 연구 (시뮬레이션 결과를 중심으로) (A Study on Application of ECO Driving Pattern of Electric Multiple Unit in ATO System (Focus on Simulation Results))

  • 김규중;이근오;김주용
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.6-13
    • /
    • 2013
  • This study focuses on finding ECO driving patterns which consider driving safety of the ATO system train and reliability and which optimize efficiency of the driving energy consumption. Research results derived by performing simulation of those 5 models show that the emergency braking which affects safety of passenger and the machinery is minimized, and safe driving speed is maintained by the prohibition of drastic acceleration/deceleration, coasting and constant-speed driving. Therefore if this result is applied to the urban railway train by amending or making ATO program to save energy usage that improve environmental quality, its effects as ECO driving pattern is huge.