• 제목/요약/키워드: Driving support

검색결과 392건 처리시간 0.029초

LKAS의 실도로 안전성 평가방법에 관한 연구 (A Study on Safety Evaluation Method of LKAS in Actual Road)

  • 윤필환;이선봉
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

머신러닝을 이용한 3차원 도로객체의 분류 (Classification of 3D Road Objects Using Machine Learning)

  • 홍송표;김의명
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.535-544
    • /
    • 2018
  • 급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.

자율주행 차량의 강건한 횡 방향 제어를 위한 차선 지도 기반 차량 위치추정 (Lane Map-based Vehicle Localization for Robust Lateral Control of an Automated Vehicle)

  • 김동욱;정태영;이경수
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.108-114
    • /
    • 2015
  • Automated driving systems require a high level of performance regarding environmental perception, especially in urban environments. Today's on-board sensors such as radars or cameras do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support these systems. An accurate digital map is used as a powerful additional sensor. In this paper, we propose a new approach for vehicle localization using a lane map and a single-layer LiDAR. The maps are created beforehand using a highly accurate DGPS and a single-layer LiDAR. A pose estimation of the vehicle was derived from an iterative closest point (ICP) match of LiDAR's intensity data to the lane map, and the estimated pose was used as an observation inside a Kalmanfilter framework. The achieved accuracy of the proposed localization algorithm is evaluated with a highly accurate DGPS to investigate the performance with respect to lateral vehicle control.

실시간 고장 예방을 위한 이벤트 기반 결함원인분석 시스템 (An Event-Driven Failure Analysis System for Real-Time Prognosis)

  • 이양지;김덕영;황민순;정영수
    • 한국CDE학회논문집
    • /
    • 제18권4호
    • /
    • pp.250-257
    • /
    • 2013
  • This paper introduces a failure analysis procedure that underpins real-time fault prognosis. In the previous study, we developed a systematic eventization procedure which makes it possible to reduce the original data size into a manageable one in the form of event logs and eventually to extract failure patterns efficiently from the reduced data. Failure patterns are then extracted in the form of event sequences by sequence-mining algorithms, (e.g. FP-Tree algorithm). Extracted patterns are stored in a failure pattern library, and eventually, we use the stored failure pattern information to predict potential failures. The two practical case studies (marine diesel engine and SIRIUS-II car engine) provide empirical support for the performance of the proposed failure analysis procedure. This procedure can be easily extended for wide application fields of failure analysis such as vehicle and machine diagnostics. Furthermore, it can be applied to human health monitoring & prognosis, so that human body signals could be efficiently analyzed.

V2X Technology Trends for Next-Generation Mobility

  • Kim, Young-Hak
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.7-13
    • /
    • 2020
  • We describes V2X technology, a connectivity-based recognition technology that is attracting attention as a key technology for implementing autonomous driving technology, and autonomous communication modules that implement ADAS technology, a sensor-based recognition technology. It also explains the trends in V2X technology standardization centered on IEEE 802.11p, which is a WAVE technology standard based on Wi-Fi/DSRC. Finally, we will discuss the market growth trend of V2X communication modules in the United States, the leading V2X technology module, and the development of technology development trends of major domestic and international companies that are leading the global technology market related to V2X communication modules. V2X and ADAS technologies will be the biggest influence on automotive purchasing decisions. In recent years, V2I mandates have been promoted beyond V2V, mainly in developed countries such as the United States. The related industry needs to focus on the development of information transmission network technology that can support high frequency high efficiency(transmission rate) and sophisticated positioning accuracy beyond conventional vehicle communication.

외부조명 변화에 강인한 운전자 졸음 감지 시스템 (System for Detecting Driver's Drowsiness Robust Variations of External Illumination)

  • 최원웅;반성범;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제19권6호
    • /
    • pp.1024-1033
    • /
    • 2016
  • In this study, a system is proposed for analyzing whether driver's eyes are open or closed on the basis of images to determine driver's drowsiness. The proposed system converts eye areas detected by a camera to a color space area to effectively detect eyes in a dark situation, for example, tunnels, and a bright situation due to a backlight. In addition, the system used a thickness distribution of a detected eye area as a feature value to analyze whether eyes are open or closed through the Support Vector Machine(SVM), representing 90.09% of accuracy. In the experiment for the images of driver wearing glasses, 83.83% of accuracy was obtained. In addition, in a comparative experiment with the existing PCA method by using Eigen-eye and Pupil Measuring System the detection rate is shown improved. After the experiment, driver's drowsiness was identified accurately by using the method of summing up the state of driver's eyes open and closes over time and the method of detecting driver's eyes that continue to be closed to examine drowsy driving.

동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화 (Design optimization of intelligent service robot suspension system using dynamic model)

  • 최성훈;박태원;이수호;정성필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF

터빈로터 중심공 검사용 자기주행 공압형 로봇 개발 (Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor)

  • 강배준;안명재;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

항타 시공 작업자를 위한 비접촉식 관입량 측정기 개발 (Development of Non-Contact Penetration Measuring Device for Pile Driving Workers)

  • 김재경;공용구;최경희;조민욱;김승연;김민정;이준협;박채원
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.58-63
    • /
    • 2020
  • At the construction site of the driving site, the pile rebound and penetration measurements are performed manually to determine the end point of the driving operation, thereby causing the measurer to be exposed to a death accident. In this study, in order to eliminate the risk of this work, a non-contact penetration measuring device was developed and usability evaluation was conducted. The penetration measuring device is manufactured based on the ultrasonic sensor, and can be combined with the pile to deliver the data in real time, and the delivered data can be output in real time on the portable PC and the final penetration can be calculated. Usability evaluation on the device was conducted by comparison with manual work. Usability evaluation was largely evaluated on measured values, subjective comfort, and body parts comfort. The result of the measured value tended to overestimate the value measured manually by the measuring device, which is similar to the previous research. In terms of subjective comfort and body part comfort, overall satisfaction was higher than the manual method when using the measuring device. Taken together, these results indicate that it is possible to use the rudder measuring device in place of manual work in the construction site, and it is judged that the worker's comfort is greatly increased by using the measuring machine. The results of this study suggest that the use of non-contact measuring device in the field can be used as basic data to support them.

자율주행자동차 위험 및 대응방안에 대한 고찰 (A Study on The Dangers and Their Countermeasures of Autonomous Vehicle)

  • 정임영
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.90-98
    • /
    • 2020
  • 현대의 차량은 수동운전에서 자동운전의 시대로 진화하고 있다. 차량 내부에서는 전장기기와 소프트웨어의 비중이 점점 높아지면서 자동운전을 지원하는 차량은 외부와의 통신이 가능한 또 하나의 오픈 컴퓨터 시스템이 되어가고 있다. 자동차의 안전은 동승자와 비동승자의 안전을 의미한다. 현재 컴퓨터 시스템의 결함내성 및 보안 해법을 차용해서 아직 출현하지 않은 궁극적 자율주행자동차의 안전문제를 모두 해결할 수 있을 것인가는 단정할 수 없다. 자율주행차량이 시장에 나온 이후에 사람들이 위험해지면 안 되기 때문에, 현재의 기술력으로 예측할 수 있는 모든 위험을 사전에 진단하는 것이 필요하다. 그리고 출시되는 차량에 맞는 방어방안을 장착하는 것이 보다 안전한 차량을 개발하는 방법이 될 것이다. 본 논문은 자율주행자동차의 현재 개발 상황을 살펴보고, 주행 안전을 위협하는 자율주행자동차의 위험을 이에 대한 방어방안과 같이 분석하고자 한다.