• Title/Summary/Keyword: Driving Simulation

Search Result 1,511, Processing Time 0.032 seconds

The Effect of Pseudoneglect on Visual Perception and Driving : Using a Driving Simulator (가성무시가 시지각과 운전수행에 미치는 영향 : 드라이빙 시뮬레이터를 이용하여)

  • Jang, Sung-Lee;Ku, Bon-Dae;Na, Duk-Lyul;Lee, Jang-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1233-1238
    • /
    • 2009
  • This study's aim was to confirm that pseudoneglect affects visual attention through car laterality, using a driving simulator with either bisection or quadrisection strategies being applied to road usage. On the pencil and paper tests, the left quadrisection and bisection marks deviated significantly to the left. While driving, the car was significantly lateralized to the right of the lane regardless of conditions. However, in terms of relative laterality, the biggest left laterality occurred on roads 1(bisection), while the smallest left laterality occurred on roads 2 (right quadrisection). Thus, the effect of pseudoneglect was demonstrated in both the pencil and paper tests and the driving simulation task. Also, roads 2 and 4, which were driven on the right side of the lane, showed a tendency for drivers to avoid the centerline, as this was the expected cause of right laterality. This study demonstrated that the pseudoneglect phenomenon can occur in a routine driving task.

  • PDF

Development of a Methodology for Detecting Intentional Aggressive Driving Events Using Multi-agent Driving Simulations (Multi-agent 주행 시뮬레이션을 이용한 운전자 주행패턴을 반영한 공격운전 검지기법 개발)

  • KIM, Yunjong;OH, Cheol;CHOE, Byongho;CHOI, Saerona;KIM, Kiyong
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • Intentional aggressive driving (IAD) is defined as a hazardous driving event that the aggressive driver intentionally threatens neighbor drivers with abrupt longitudinal and lateral maneuvering. This study developed a methodology for detecting IAD events based on the analysis of interactions between aggressive driver and normal driver. Three major aggressive events including rear-close following, side-close driving, and sudden deceleration were analyzed to develop the algorithm. Then, driving simulation experiments were conducted using a multi-agent driving simulator to obtain data to be used for the development of the detection algorithm. In order to detect the driver's intention to attack, a relative evaluation index (Erratic Driving Index, EDI) reflecting the driving pattern was derived. The derived IAD event detection algorithm utilizes both the existing absolute detection method and the relative detection method. It is expected that the proposed methodology can be effectively used for detecting IAD events in support of in-vehicle data recorder technology in practice.

Driving Simulation after Road Design by 3D-GIS in Digital Elevation Model from Digital Aerial Photogrammetry (수치항공사진에서 생성된 수치표고모형에서 3차원 GIS를 이용한 도로설계와 모의주행)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.143-148
    • /
    • 2008
  • This Study is about driving simulation after road design by 3D-GIS in digital elevation model from digital aerial photogrammetry. For designing roads efficiently it's very important to consider geographical features before design when analyze the view. Nevertheless, existing studies is mainly restricted in the mountainous, despite of using digital map or aerial photogrammetry and the study which used aerial photo in the area where the road designing is made really is not get executed. Therefore, this study will do 3D-road design and driving simulation by appling really road design data to topography, on the basis of digital elevation generated from aerial photogrammetry.

Development of Control Method for Self-Driving Roller Conveyor Based on 3D Simulation (자체 구동 롤러 컨베이어의 3차원 시뮬레이션 기반 제어 기법 개발)

  • Seokwon Lee;Byungmin Kim;Heon Huh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.861-864
    • /
    • 2024
  • The self-driving roller conveyor system, which transports target products by controlling multiple rollers with a motor, is a logistics system suitable for branching and joining logistics and controlling the alignment of target products, and its utilization is increasing, especially in the food manufacturing process. In this paper, we build a simulation environment using Unity software based on 3D graphic modeling of a self-driving roller conveyor system. In a situation where target products are supplied irregularly in terms of time, a method is proposed that can align products to maintain constant spacing by controlling the rollers. Simulation results show that effective alignment of products is possible by controlling the motor that drives the roller based on sensor data of the product position.

Design of Driver License Simulation Model using 3D Graphics for beginner (운전연습생을 위한 3D 그래픽을 적용한 운전면허 시뮬레이터의 설계)

  • Won, Ji Woon;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 2009
  • Recently, the structure of simulation environment is important issue in all fields. In case of the training for operating the machines which are costly such as airplanes or spaceships, simulators could be helpful for decreasing the costs and training effects by simulating real situation. When we get the driving license, too many peoples are waiting for their turns because of limited cars and testing spaces in Korea. To solve this problem, we've designed and developed the basic design for the simulators. We suggested the Computer 3D Simulation Model for practice of a drives's license. The concept of this simulator was from a 3D Racing-game which suit for driving exercise. We provide users with handle-controlled simulation setting in order that users feel reality as if they drive really through this simulator. We also use 'force-feedback' system which give handle vibration in case users collide against obstacles or exceed the line since users can absorb the simulation program and feel the sense for the real. This paper is the study about modeling the driving exercise model made use of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 3 : Optimal Driving Control Algorithm (버스용 병렬형 하이브리드 동력전달계의 개발(III) 제 3 편;최적 주행 제어 알고리즘)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.182-197
    • /
    • 1999
  • Described in this paper is an optimal driving control algorithm which focused on the improvement of fuel economy and the minimization of pollutant emissions in the parallel type hybrid drivertrain system for transit bus. For the energy balance among components such as engine, induction machine and buttery, the algorithm for power split ration determine is proposed. When it is implemented in the hybrid electric control unit(HECU) , using the sub-optimal method and the approximate technique , it is possible to save the memory , to shorten the calculation time, and to achieve the efficient driving actually. A Shift strategy for automated manual transmission is the other side of the driving control algorithm. It enables to select the optimal gear by using several shift maps which were predefined from the proposed method in this paper, As a results of driving simulation, it is proved that these algorithms make the hybrid drivetrain system to reduce fuel consumption and emissions considerably and to have the ability to the efficient use of battery.

  • PDF

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle based on Driving Data (주행데이터 기반 자율주행 안전성 평가 시나리오 개발 및 검증)

  • Lim, Hyeongho;Chae, Heungseok;Lee, Myungsu;Lee, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As automotive industry develops, the demand for increasing traffic safety is growing. Lots of researches about vehicle convenience and safety technology have been implemented. Now, the autonomous driving test is being conducted all over the world, and the autonomous driving regulations are also being developed. Autonomous vehicles are being commercialized, but autonomous vehicle safety has not been guaranteed yet. This paper presents scenarios that assess the safety of autonomous vehicles by identifying the minimum requirements to ensure safety for a variety of situations on highway. In assessing driving safety, seven scenarios were totally selected. Seven scenarios were related to lane keeping and lane change performance in certain situations. These scenarios were verified by analyzing the driving data acquired through actual vehicle driving. Data analysis was implemented via computer simulation. These scenarios are developed based on existing ADAS evaluation and simulation of autonomous vehicle algorithm. Also Safety evaluation factors are developed based on ISO requirements, other papers and the current traffic regulations.

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

Toward Real-world Adoption of Autonomous Driving Vehicle on Public Roadways: Human-Centered Performance Evaluation with Safety Critical Scenarios (자율주행 차량의 실도로 주행을 위한 안전 시나리오 기반 인간중심 시스템 성능평가)

  • Yunyoung Kook;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.6-12
    • /
    • 2023
  • For the commercialization and standardization of autonomous vehicles, demand for rigorous safety criteria has been increased over the world. In Korea, the number of extraordinary service permission for automated vehicles has risen since Hyundai Motor Company got its initial license in March 2016. Nevertheless, licensing standards and evaluation factors are still insufficient for operating on public roadways. To assure driving safety, it is significant to verify whether or not the vehicle's decision is similar to human driving. This paper validates the safety of the autonomous vehicle by drawing scenario-based comparisons between manual driving and autonomous driving. In consideration of real traffic situations and safety priority, seven scenarios were chosen and classified into basic and advanced scenarios. All scenarios and safety factors are constructed based on existing ADAS requirements and investigated via a computer simulation and actual experiment. The input data was collected by an experimental vehicle test on the SNU FMTC test track located at Siheung. Then the offline simulation was conducted to verify the output was appropriate and comparable to the manual driving data.

Shape Design Sensitivity Analysis Case of the Valves installed in the Hydraulic Driving Motor (사판식 구동모터에 장착된 밸브의 설계변수 민감도 해석 사례)

  • Noh, Dae-Kyung;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 2013
  • This paper is about study how to decrese surge pressure that is occurred in excavator driving motor. We used computer simulation program SimulationX. It is also about the way finding design problem and approaching a solution through interpreting shape design sensitivity analysis. Programmes are below. First of all, finding shape fault by analyzing dynamic behavior of valves installed in hydraulic driving motor which is designed now. And drawing variable which is considered sensitive to improve dynamic efficiency among a lot of shape variables. Then, targeting that variable and examining dynamic efficiency stabilization tendency with controlling it. Finally, suggesting the most effective tuning method through variable combination as there are a lot of sensitive variables.