• Title/Summary/Keyword: Driving Mode Control

Search Result 225, Processing Time 0.03 seconds

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

Development of BMS applying to LPB Pack in Bimodal Tram (바이모달트램용 LPB팩에 적용될 Battery Management System 개발)

  • Lee, Kang-Won;Chang, Se-Ky;Nam, Jong-Ha;Kang, Duk-Ha;Bae, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.477-477
    • /
    • 2009
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

  • PDF

Development and Application of LPB Management System for Bimodal Tram (바이모달트램용 LPB Management System 개발 및 적용)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

A Study on the Characteristics of Simulated Real Driving Emissions by Using Random Driving Cycle (임의주행 사이클을 이용한 실제도로 주행 배출가스 특성 모사에 관한 연구)

  • Kwon, Seokjoo;Kwon, Sangil;Kim, Hyung-Jun;Seo, Youngho;Park, Sungwook;Chon, Mun Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • This study was conducted in order to estimate the exhaust emissions analysis method of the real driving emission(RDE). The Association for Emissions Control by Catalyst(AECC) has developed a test procedure by using a random cycle method based on the chassis dynamometer. In order to confirm this approach in Korea, Euro 5(DPF), Euro 6(DPF + LNT), and Euro 6(DPF + SCR) were performed on three different vehicles to determine the exhaust gas characteristics of the random cycle, real-road driving test(PEMS), and emission certification driving mode(NEDC). Six different random cycle driving modes were generated by the vehicle specifications(e.g. curb weight, engine power, gear ratio, and maximum acceleration). The NOx emissions were increased in the NEDC, random cycle, and PEMS order in this study regardless of the test vehicles. The random cycle method has the advantage because it utilizes a chassis dynamometer in the laboratories for a repeatable data collection, and it allows any eminent emission improvement checked prior to a real-road driving test with PEMS.

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Automatic guidance system of Bimodal-tram using magnetic markers (자석마커를 이용한 바이모달트램 자동운전시스템)

  • Byun, Yeun-Sub;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1802-1803
    • /
    • 2011
  • The Korea Railroad Research Institute (KRRI) is developing the Bimodal-tram. The vehicle has a navigation control system (NCS) for automatic driving. The vehicle has to follow a reference path in automatic mode. NCS uses magnetic markers to calculate the vehicle position. The vehicle lane is marked with permanent magnets that are buried in the road. In this purpose, we show the characteristics and the configuration of NCS.

  • PDF

Driving of Switched Reluctance Motor to Reduce Torque Ripple (맥동 토오크 저감을 위한 스위치드 리럭턴스 전동기 구동에 관한 연구)

  • 오인석;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 1997
  • Switched Reluctance Motors(SRMs) have a considerable inherent torque ripple due to the driving characteristics of pulse current waveform and the nonlinear variation inductance profile. This paper describes a current shape characteristics to effect a torque ripple reduction, and one pulse mode switching control method is proposed to minimize torque ripple of a switched reluctance motor regardless of speed and load condition by regulating tow parameters, such as, advance angle and exciting voltage. The experiments are performed to verify the capability of proposed switching method on 6/4 salient type SRM.

  • PDF

Boost Input type High Power Factor Resonant Power Supply for driving Magnetron Device (마그네트론 구동용 고역률 부스트 입력 방식의 공진형 전원장치)

  • Jeong, Jin-Beom;Yeon, Jae-Eui;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1078-1080
    • /
    • 2003
  • This paper proposes the boost input type resonant power supply for driving the magnetron device of the high-capacity microwave oven. Circuit topology of the proposed power supply is the boost input type resonant converter which uses the resonance between transformer leakage inductance and resonance capacitance. Proposed power supply obtains high power factor more than 98% through continuous current mode pulse width modulation. To verify the validity of the proposed power supply, operation principle in the steady state is analyzed and experimental results are presented.

  • PDF

Tendon Design for Master-slave Manipulator in Consideration of Constrained Force Reflection Control Structure (마스터-슬레이브 조작기에서 제한된 힘반영제어기 구조를 고려한 Tendon 설계)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1043-1052
    • /
    • 2009
  • In this work, a master-slave manipulator system which will be used for handling objects contaminated by radioactivity has been addressed. The links of manipulators are driven independently by individual motors installed on the base and the driving torque is transmitted through pre-tensioned tendons. Since the measurable variables are the positions and rates of master/slave motors, only a constrained specific bilateral control structure is available. In the consideration of the flexibility of the tendon and constrained control structure, we derived a necessity for tendon design to prevent uncontrollable vibration mode through a modal analysis. Based on a reduced rigid body model, a control design was suggested and tendons were selected. The feasibility of the proposed analysis and tendon design were verified along with some simulation results.