• 제목/요약/키워드: Driving Cycle

검색결과 296건 처리시간 0.027초

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION-PART II: CONTROL STRATEGY

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.785-793
    • /
    • 2006
  • The topic of this study is the control strategy of a mild hybrid electric vehicle (HEV) equipped with a continuously variable transmission (CVT). A brief powertrain and vehicle configuration is introduced followed by the control strategy of the HEV with emphasis on two key parts. One of them is an ideal operating surface (IOS) that operates the CVT powertrain optimally from the viewpoint of the tank-to-wheel efficiency. The other is a charge sustaining energy management to maintain the battery state of charge (SOC) within an appropriate level. The fuel economy simulation results of the HEV over standard driving cycles were compared with those of the baseline vehicle. Depending on the driving cycle, 1.3-20% fuel saving potential is predicted by the mild hybridisation using an integrated starter alternator (ISA). The detailed energy flow analysis shows that the majority of the improvement comes from the idle stop function and the benefits for electrical accessories. Additionally, the differences between the initial and the final SOC are in the range $-1.0{\sim}+3.8%$ in the examined cycle.

전기자동차용 전동기/제어기의 시험 방법 (Test method for Motor/controller for Electric Vehicle)

  • 오성철
    • 전력전자학회논문지
    • /
    • 제8권4호
    • /
    • pp.328-335
    • /
    • 2003
  • 본 논문에서는 전기자동차용 전동기/제어기를 시험하기 위한 절차를 제시하였다. 현재 전기자동차용 전동기/제어기의 시험에 관한 국제 규격은 주로 안전 운전을 위한 최소 기준치를 정의하고 있지만 상세한 시험 방법에 대해서는 기술하고 있지 않다. 시험 항목 및 방법을 개발하기 위하여 기존의 선진국 규격에 대하여 전문가들의 의견을 바탕으로 보완 작업을 수행하였다. 개발된 규격에 따라 전동기/제어기의 시험 방법을 제시하였으며 다양한 부하 장치를 사용할 경우의 시험 방법을 제시하였다. 시험 절차는 주로 전동기 제어기 조합시험에 주안점을 두었으며 부하 장치로는 전동기-발전기, 와전류형 엔진 다이나모, 교류 다이나모 등을 사용하였으며 전동기/제어기를 차량에 탑재하지 않은 상태에서 전동기/제어기의 실제 주행모드 운전 특성을 시험하기 위한 방법을 제시하였다.

노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어 (Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance)

  • 한진오;신병관;조한상;이교일
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

배기량과 차량중량에 따른 LPG 연료를 사용하는 승용 및 승합형 자동차 온실가스 배출 특성에 관한 연구 (A Study on Greenhouse Gas Emission Characteristics of Passenger Car and Van with LPG Fuel According to Displacement and Vehicle Weight)

  • 김형준;이종태;임윤성;윤창완;길지훈;홍유덕
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.497-502
    • /
    • 2018
  • In Korea, passenger car and van using LPG fuel including taxi constantly increased due to the high cost of fuel. Recently, the emission standard has continuously tightened in the world. In this investigation was conducted the greenhouse gas emission characteristics of LPG vehicles according to the displacement and weight. Exhaust emission characteristics of 13 test LPG vehicles from about 1.0 L to 3.0 L displacements were measured and analyzed by using chassis dynamometer and emission analyzer. It is revealed that the greenhouse gas emission was showed the increasing tendency as the displacement and curb weight increased. Also, greenhouse gas emission of SC03 driving cycle has highest value and that of HWFET driving cycle shows the lowest value.

차내 정보 시스템의 시각적 요구 평가를 위한 사용자 주도의 시각 차폐 기법 (A User-driven Visual Occlusion Method for Measuring the Visual Demand of In-Vehicle Information Systems (IVIS))

  • 박정철
    • 대한인간공학회지
    • /
    • 제28권3호
    • /
    • pp.49-54
    • /
    • 2009
  • Visual occlusion method is a visual demand measuring technique which uses periodic vision/occlusion cycle to simulate driving environment. It became one of the most popular techniques for the evaluation of in-vehicle interfaces due to its robustness and cost-effectiveness. However, it has a limitation in that the vision/occlusion cycle forces the user to use the IVIS at a predetermined pace, while a driver decides when to use the device on his/her own in actual driving. This paper proposes a user-driven visual occlusion method for measuring the visual demand of in-vehicle interfaces. An experiment was conducted to examine the visual demand of an in-vehicle interface prototype using both the existing (system-driven) occlusion method and the proposed (user-driven) one. Two in-vehicle tasks were evaluated: address input and radio tuning. The results showed that, for the radio tuning task, there were significant differences in total shutter open time and resumability ratio between the methods. The user-driven visual occlusion method not only allows a better representation of drivers' behavior, but it also seems to provide more information on the chunkability of a task.

사이클 타임 단축을 위한 로터리 트랜스퍼 머신의 인덱스 테이블 구동부 설계에 관한 연구 (A Study on the Design of Index Table Drive of Rotary Transfer Machines to Reduce Cycle Time)

  • 허기석;박용우;김동선;류성기
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.60-65
    • /
    • 2022
  • This study focuses on the driving control design of an index, which is a key component of a rotary transfer machine that is effective in improving productivity and reducing manufacturing costs by shortening cycle time. Although various index studies have been conducted on the rotation of workpieces such as general-purpose machine tools and tilting indices, the development of an index for rotary transfer machines for transfer is insufficient. The index consists of a body, table, hydraulic cylinder, motor, reducer, and curved coupling. The torque of the table for driving was selected, and the angular velocity and torque pattern were simulated using the motor manufacturer's program. The specifications of the drive motor were determined based on the selected torque.

자전거로봇의 균형제어 및 주행 (Balancing and Driving Control of a Bicycle Robot)

  • 이석인;이인욱;김민성;하혁;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.532-539
    • /
    • 2012
  • This paper proposes a balancing and driving control system for a bicycle robot. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. For the driving control, PID control algorithm with a variable gain adjustment has been developed in this paper, where the gains are heuristically adjusted during the experiments. To measure the angles of the wheels the encoders are used. For the balancing control, a roll controller is designed with a non-model based algorithm to make the shortest cycle. The tilt angle is measured by the fusion of the acceleration and gyroscope sensors, which is used to generate the control input of the roll controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed bicycle robot.

모터 및 배터리 용량에 따른 전기스쿠터 성능해석 (The Analysis of a Electric Scooter's Performance through Motor and Battery Capacity Changing)

  • 길범수;김강출
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.7-13
    • /
    • 2011
  • The climate change due to the increased consumption with fossil fuel and rise of the oil price have been serious global issues. Automobile industry consumes 30% of the oil every year and causes air pollution and global warming by the exhaust emissions and carbon dioxide ($CO_2$). The demand of two-wheeled vehicle increases every year due to the parking and traffic problem caused by the increased automobiles in the urban area. Approximately 50,000,000 two-wheeled vehicles were produced in 2008. The development and sales of the hybrid two-wheeled vehicle industry become active due to its increased market demands. In this paper, the change of the motor and battery efficiency, driving distance, hill climbing ability with the change of the motor capacity was analyzed. Simulation of the peculiarities in urban driving schedule(World-wide Motorcycle Test Cycle(WMTC), Manhattan driving schedule), constant speed(10 km/h, 35 km/h) of small electronic two-wheeled vehicle was also carried out. Through the simulation result, appropriate capacities of the motor and battery for urban driving was acquired.

주행 사이클을 고려한 IPMSM의 효율 및 출력 밀도 개선으로 경량 전기 자동차의 주행거리 연장 (Range Extension of Light-Duty Electric Vehicle Improving Efficiency and Power Density of IPMSM Considering Driving Cycle)

  • 김동민;정영훈;임명섭;심재한;홍정표
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2197-2210
    • /
    • 2016
  • Recently, the trend of zero emissions has increased in automotive engineering because of environmental problems and regulations. Therefore, the development of battery electric vehicles (EVs), hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs), and fuel cell electric vehicles (FCEVs) has been mainstreamed. In particular, for light-duty electric vehicles, improvement in electric motor performance is directly linked to driving range and driving performance. In this paper, using an improved design for the interior permanent magnet synchronous motor (IPMSM), the EV driving range for the light-duty EV was extended. In the electromagnetic design process, a 2D finite element method (FEM) was used. Furthermore, to consider mechanical stress, ANSYS Workbench was adopted. To conduct a vehicle simulation, the vehicle was modeled to include an electric motor model, energy storage model, and regenerative braking. From these results, using the advanced vehicle simulator (ADVISOR) based on MATLAB Simulink, a vehicle simulation was performed, and the effects of the improved design were described.