• 제목/요약/키워드: Driver-vehicle interface

검색결과 75건 처리시간 0.027초

Development and Usability Evaluation of Fixed-base AHS Simulator

  • Cha, Doo-Won;Park, Peom
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2002
  • This study described the specification and configuration of developed fixed-base AHS (Automated Highway System) simulator fur the human factors researches, and its usability evaluation results after riding 120, 140, and 160kph automated driving speed. As the results, this study suggested the subjects' preferences and opinions about simulator and AHS configurations that would help to establish the AHS R&D plan and driver-vehicle/road interface design guidelines as the basic researches of the AHS human factors.

  • PDF

자동차 항법장치 도로지도의 감성공학적 평가에 관한 연구 (Human Sensibility Ergonomics Evaluation of the Car Navigation System Digital Map)

  • 차두원;백승렬;박범
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.101-111
    • /
    • 1998
  • CNS (Car Navigation System) is the most compatible candidate among various in-vehicle information systems as a provider of ITS (Intelligence Transport Systems) information. It generally consists of remote controller, display, CD-changer, GPS receiver and so on. Among them, display is the most important and critical element of the HMI (Human-Machine Interface) suggesting the digital map to the driver. Therefore, it is certain that the display gives cognitive, physical, mental and visual workloads to the driver which are directly related with the driver's and road safety with the success of ITS. Until now, various human factors techniques have been developed and applied to estimate the driver's workload and to collect the driver's requirements of the CNS digital map, for example, mental workload assessment, visual activity analysis, cognitive analysis and so on. In addition to these kinds of techniques, this research performed the human sensibility ergonomics approach to directly investigate and evaluate the driver's requirements and sensibilities of the real products.

  • PDF

차량 항법장치의 화면표시형태에 대한 인간공학적 비교 (Comparison of map display styles of vehicle navigation system on human factors)

  • 정범진;백승렬;김기범;박범
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1995년도 추계학술대회논문집
    • /
    • pp.208-213
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and lastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other infor- mation service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating -must be considered. The display style must be designed simply and easily, not to be obstacle of human - machine interface. In this study, outside- in view display style and inside-out view display style are compared each other. Tow factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds -Cross, T-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically. The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF

자동차 항법장치의 화면표시형태에 대한 인간공학적 비교 (Comparison of Map Display Styles of Vehicle Navigation System on Human Factors)

  • 정범진;백승렬;김기범;박범
    • 산업경영시스템학회지
    • /
    • 제18권36호
    • /
    • pp.49-59
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and fastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other information service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating - must be considered. The display style must be designed simply and easily, not to be obstacle of human -machine interface. In this study, outside-in view display style and inside-out view display style are compared each other. Two factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds - Cross, T-cross, Y-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. Vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically, The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF

자동변속장치 ECU와 프로그램의 Interface에 의한 변속과도특성 연구 (Study on the Shifting Transients by Interfacing ECU with Simulation Program)

  • 조한상;박영일
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.21-29
    • /
    • 1995
  • The automotive transmission is the principal component of the power transmission system which converts the engine power into the adjustable power for the vehicle driving system. To the unskilled driver the automization of transmission is required for the safety and fuel economy. In this study, the dynamic model of the automotive power transmission system was presented and simulation program and interface board which interface IBM-PC with ECU was devloped. Through the traveling simulation by interfacing ECU with simulation program, the shifting transients are investigated. For verification of simulation experiment was carried out, the results of simulation was agreed well with those of simulation.

  • PDF

교차로에서의 안전 좌회전을 위한 차량간 통신 기반 알고리즘 설계 및 구현 (Algorithm Design and Implementation for Safe Left Turn at an Intersection Based on Vehicle-to-Vehicle Communications)

  • 서현수;김효언;노동규;이상선
    • 한국통신학회논문지
    • /
    • 제38C권2호
    • /
    • pp.165-171
    • /
    • 2013
  • 차량 통신 프로토콜은 IEEE 802.11 WG과 P1609에서 진행하고 있는 WAVE(Wireless Access in Vehicular Environments)가 대표적이며, 보안 등을 제외한 MAC과 PHY에 대한 부분은 표준으로 제정되었다. 이러한 차량통신을 이용하여 운전자들의 안전과 전체 교통 흐름의 원활한 통제를 위해 국내외에서 많은 프로젝트가 진행되고 있다. 따라서 본 논문에서는 교차로에서 좌회전 시도 시에 위험 상황이 예상되면 운전자에게 알려주기 위한 차량간 통신 기반 안전서비스 알고리즘을 설계하였고, 이를 실제 구현하였다. 제안하는 알고리즘은 자차와 반대편에서의 접근차량에 대한 모델을 구성하고 충돌 위험이 있을 경우 운전자에게 HMI(Human Machine Interface)를 통해 경고를 주게 된다. 본 안전 서비스의 성능 테스트를 위해 테스트 차량을 이용하여 알고리즘을 시스템에 탑재하였으며, 테스트 케이스를 구성하여 성능 시험장에서 검증하였다. 테스트 결과로써, 우수한 성능을 나타냈으며, 앞으로 차량 통신 인프라가 설치된다면 V2I(Vehicle to Infrastructure) 통신을 이용하여 본 알고리즘을 보다 정밀하게 보완해야 할 것이다.

자동차 Instrument Panel 의 운전자 인지지도 추출을 위한 Blind-Pointing Method 개발에 관한 연구 (A study for the development of Blind-Pointing Method to extract drivers' cognitive map on Instrument Panel)

  • 유승동;박범
    • 대한산업공학회지
    • /
    • 제26권1호
    • /
    • pp.9-16
    • /
    • 2000
  • In these days, the interior interface design for vehicle drivers was recognized as important affairs. Thereby, many studies are being performed for this. These studies emphasize the physical factors and usability of human, but those for the cognitive factors are not enough. Cognitive factors are very important elements to determine the drivers' performance. In this study, it was studied about the method to extract a driver's cognitive map on IP(Instrument Panel) in dynamic situation, and BPM(Blind-Pointing Method) was proposed for this. The BPM is the method to extract a cognitive map by subject's pointing action under the blinded condition. The experiment was conducted to validate compatibility of BPM as the method to extract a cognitive map. In the experiment, subjects were divided in two groups, the first group of subjects has their own vehicle and driver license, and the second group of subjects doesn't have own vehicle but has driver license. The result shows that the IP form of cognitive map is not different between two groups, and BPM is the compatible method to extract a cognitive map.

  • PDF

항법장치 simulator 기반의 RNASA-TLX 를 이용한 항법장치 운전자 mental workload 평가에 관한 연구 (Simulator-Based Mental Workload Assessment of the In-Vehicle Navigation System Driver Using Revision of NASA-TLX)

  • 차두원;박범
    • 산업공학
    • /
    • 제10권1호
    • /
    • pp.145-154
    • /
    • 1997
  • In developing the HMI(Human-Machine Interface) evaluation system for the IVNS(In-Vehicle Navigation System), design guidelines and evaluation methods are the most crucial problems for its use and efficiency. As the part of this system, focused on the final product of the database, subjective mental workload assessment is seriously considered to evaluate the driver's own driving task using the IVNS. This paper suggests the methodology for the ergonomic assessment of the IVNS that corresponds to the subjective measurement of the driver's mental workload by rating his or her own driving task. For this approach, Revision of NASA-Task Load Index(RNASA-TLX) was developed which translated and revised the version of NASA-TLX that is generally accepted an efficient and powerful method for evaluating the in-vehicle information systems. To verify the RNASA-TLX, an experiment was conducted in a real road situation, because the result of the laboratory approach is uncertain and has the differences from the real road test.

  • PDF

퍼지 논리에 기반한 차량 충돌 경보 알고리듬 (New Vehicle Collision Warning Algorithm Based On Fuzzy Logic)

  • 김선호;오세영
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

자동차 항법장치 HMI 평가시스템 설계 및 구축에 관한 연구 (A study of the design and the implementation for the Human-Machine Interface Evaluation System in the In-Vehicle Navigation System)

  • 차두원;박범;이수영
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1998년도 춘계학술대회논문집
    • /
    • pp.13.1-18
    • /
    • 1998
  • IVNS(In-Vehicle Navigation System) which developed by the advance of technological system including computer, display and communication will procide the important interface functions between the driver and the ITS (Intelligent Transport System). However, hat the human factors engineer can actually offer to the designer is by no means a complete set of design specifications. Therefore, a set of boundary conditions and operational ranges within which the designer can be assured that physical, perceptual and cognitive abilities and limitations of drivers will be accommodated system atically[6]. Also, this will be the considerations to compose the IVNS HMI (Human-Machine Interface) design guidelines and IVNS HMI evaluation system. As the first phase of developing the IVNS HMI evaluation system, this paper describe the architecture and the content of this system.

  • PDF