• 제목/요약/키워드: Drivable area segmentation

검색결과 1건 처리시간 0.015초

딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구 (A Study on Model for Drivable Area Segmentation based on Deep Learning)

  • 전효진;조수선
    • 인터넷정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.105-111
    • /
    • 2019
  • 인공지능, 빅데이터, 자율주행 등 4차 산업혁명시대를 이끄는 핵심기술은 컴퓨팅 파워의 급속한 발전과 사물인터넷에 기반한 초연결 네트워크를 통해 구현되고 서비스된다. 본 논문에서는 자율주행을 위한 기본적인 기능으로 다양한 환경에서도 정확하게 주행가능한 영역을 인식하여 추출하는 인공지능 딥러닝 모델들을 구현하고, 그 결과를 비교, 분석한다. 주행가능한 영역을 추출하는 딥러닝 모델은 영상 분할 분야에서 성능이 우수하고 자율주행 연구에서 많이 사용하는 Deep Lab V3+와 Mask R-CNN을 활용하였다. 다양한 환경에서의 주행 정보를 위해 여러 가지 날씨 조건과 주 야간 환경에서의 주행 영상 및 이미지를 제공하는 BDD 데이터셋을 학습데이터로 사용하였다. 활용한 모델들의 실험 결과, DeepLab V3+는 48.97%의 IoU를 보였으며, Mask R-CNN은 68.33%의 IoU로 더 우수한 성능을 보였다. 또한, 구현한 모델로 추출된 주행가능 영역을 이미지에 표시하여 육안으로 검사한 결과, Mask R-CNN은 83%, Deep Lab V3+는 69% 정확도로 Mask R-CNN이 Deep Lab V3+ 보다 주행가능한 영역을 추출하는 분야에서는 더 성능이 높은 것으로 확인하였다.