• 제목/요약/키워드: Drinking water supply systems

검색결과 55건 처리시간 0.021초

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • 적정기술학회지
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.

IoT 기술을 활용한 스마트 물관리 필요성에 관한 연구 (Research Regard to Necessity of Smart Water Management Based on IoT Technology)

  • 최영환;김영렬
    • 한국산업정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.11-18
    • /
    • 2017
  • 본 논문은 소비자에게 공급되는 수돗물의 공급시설(Water Supply Network)에 IoT 기술을 활용하여 소비자의 물 사용량을 원격으로 검침하고, 공급시설의 누수를 줄여서 원가를 절감하는 스마트 물관리(Smart Water Management) 기술의 적용효과를 검증하였다. SWM 실증모형은 수돗물 공급시설에 원격 누수감지센서, 스마트 미터링(Smart Metering), 초소형 멀티센서를 설치하고, 원격에서 운영현황을 실시간으로 감시하고 소비자에게 수돗물 사용량과 수질을 스마트폰 앱으로 제공하였다. 이때, 소비자가 수돗물 사용량 정보를 이용하여 수돗물을 아껴 쓰는지, 수돗물 수질정보를 이용하여 직접 음용하는지를 조사하였다. 특히, 본 연구에서는 SWM을 실증 적용함으로써 공급시설의 유수율 향상, 수돗물 음용률 향상, 소비자 민원 감소, 운영비용 절감, 수돗물 사용량 절감이 달성되는지를 검증하는데 목적이 있다. 또한 수돗물 공급시설의 IoT 센서, 운영자 모니터링 시스템, 이상발생시 탐사복구 솔루션이 융합된 하나의 SWM 모델을 수립하였으며, 관련 기술 개발을 통해 국내 물산업을 육성하고, SWM을 선진수준으로 확산하였다는데 의의가 있다고 하겠다.

개발도상국의 빗물식수화시설 사업에 대한 지역주민의 인식 분석 : 베트남 사례를 중심으로 (Analysis of Local Resident'S Perception on 'Rainwater for Drinking' Project in Developing Countries : Focusing on Vietnam Case Studies)

  • 이민주;한무영
    • 대한환경공학회지
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 식수부족문제는 지표수와 지하수의 오염, 수처리의 어려움, 기반시설의 부재로 인해 많은 개발도상국에서 주로 발생하고 있다. 이에 빗물을 모아 식수로 이용하는 빗물식수화시설(RFD)이 매우 효과적인 대안으로 떠오르고 있으며, 전 세계적으로 빗물식수화시설 사업이 진행되고 있다. 대부분의 빗물식수화시설은 지역주민이 사업 종료 후부터 스스로 시설을 운영하도록 하기 때문에 빗물식수화시설 사업에 대한 지역주민의 인식이 매우 중요하다. 따라서 본 연구에서는 베트남에서 빗물식수화시설을 사용하는 총 209명의 현지 지역주민을 대상으로 설문조사와 면담을 실시하여 지역주민의 인식을 조사하였다. 지역주민들은 빗물식수화시설 사업의 효과성에 긍정적인 인식을 가지고 있으며(41.9%), 빗물식수화시설 사업에 참여의향이 있는 것으로 나타났다(58.9%). 지역주민이 빗물식수화시설 사업에서 가장 기대하는 세가지 요소는 '안전한 식수의 공급', '마을공동체의 활성화', '빗물식수화시설의 확산'순으로 나타나 빗물식수화시설 사업에의 참여를 통해 안전한 식수를 공급받는 것을 가장 기대하는 것으로 파악되었다. 빗물식수화시설 사업에서 가장 우려하는 세가지 요소로는 '빗물의 수질', '빗물식수화시설의 설치 기술', '지역주민의 참여도'순으로 나타났으며, 특히 빗물식수화시설 사업의 종료 후의 빗물 수질과 시설의 유지관리를 우려하는 것으로 파악되었다. 빗물식수화시설 사업의 종료 후에도 지역주민이 성공적으로 빗물식수화시설을 운영하기 위해서는 빗물식수화시설의 수질을 용이하게 측정할 수 있는 간편한 수질 측정 도구의 개발과 지역주민 스스로가 빗물식수화시설에 관심을 가지고 유지관리를 할 수 있도록 빗물식수화시설에 대한 정기적인 교육을 진행하는 것이 필요할 것이다.

대수층 저장·이동 및 회수에 의한 음용수 생산과정에서의 위해사건분석 (Hazardous event analysis in drinking water production using aquifer storage transfer and recovery)

  • 이상일;지현욱
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.23-31
    • /
    • 2015
  • Aquifer storage transfer and recovery (ASTR) is a type of managed aquifer recharge which entails injecting water into a storage well and recovering it from a different well. It has effects of natural purification when injected water passes through aquifer medium, and can be a good way of supplying water especially in a region with poor surface water quality. This study is about an on-going effort to introduce ASTR as a solution to source water problems in coastal areas. A pilot study is being conducted in the delta of the Nakdong River. A proactive management system is incorporated to ensure the water qulity in the process of drinking water process. The system is based on the Hazard Analysis and Critical Control Point (HACCP) which is a tool originated from the food industry in order to assess hazards and establish control systems for the safety of food product. In this paper, we analyze hazardous events which can occur in the entire water supply system using ASTR as a first step to the incorporation of HACCP to drinking water production process.

무선데이터 통신(2.4GHz대)을 이용한 수문 원격제어장치 개발에 관한 연구 (A Study on Development of Remote Control System for Watergate by Used Wireless Transfer Method)

  • 이진구;김일수;박창언
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.237-241
    • /
    • 2003
  • The world's supply of water in all forms is enormous. However, only a tiny fraction of the planet's supply is available to us as fresh water, and that is distributed very unevenly. About 97% of oater volume is found in the oceans and is too salty for drinking, growing crops, and most industrial uses except cooling. In addition water supply crises in already-water-short-regions will intensify because population and industrialization increase. Today, remote monitoring and control systems are becoming the cost-effective management tools for almost all water user groups, including irrigators, water districts, municipal water suppliers, and wildlife management groups. This paper represents a new approach in the water-gate control using radio communication. The proposed device is simple in structure and suitable for implementation of water-gate control through the transceiver by radio communication. It was confirmed that the developed device was very efficient to control level of water-gate and to prove the up and down motion of water-gate through the LCD displayer.

  • PDF

주거건물의 급탕방식별 급수.급탕헤더시스템 적용방안에 관한 연구 (A Study on the Application Method of Cold & Hot Water Manifold System for Hot Water Supply System in Residential Buildings)

  • 차민철;제성호;석호태
    • 한국주거학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-88
    • /
    • 2008
  • Hot water is used by having a wash, dishes, taking tub and drinking water in residential buildings, and the use objective is to raise comfort of human body sense, washing and sterilization effect and so on. Cold & hot water supply system is understanded simpler than HVAC systems relatively, so it is true that pace of performance improvement is slower than other systems for plan and technical development. In this study, the performance evaluations are conducted under the condition of composition ratio by 1:1 for cold & hot water supply manifold system using functionally complex valves such as constant flow regulating valve and 3-way mixing valve in the area of $105.6m^2$ apartment which consist of the largest part of the whole apartment. Also, flow rate related to simultaneous use of faucets and change of hot water temperature are compared with the existing method.

Models for drinking water treatment processes

  • Jusic, Suvada;Milasinovic, Zoran;Milisic, Hata;Hadzic, Emina
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.489-500
    • /
    • 2019
  • With drinking water standards becoming more rigorous and increasing demands for additional water quantities, while water resources are becoming more polluted, mathematical models became an important tool to improve water treatment processes performance in the water supply system. Water treatment processes models reflect the knowledge of the processes and they are useful tools for water treatment process optimization, design, operator training for decision making and fundamental research. Unfortunately, in the current practice of drinking-water production and distribution, water treatment processes modeling is not successfully applied. This article presents a review of some existing water treatment processes simulators and the experience of their application and indicating the main weak points of each process. Also, new approaches in the modeling of water treatment are presented and recommendations are given for the work in the future.

나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구 (Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment)

  • 김승현;홍승관;윤제용;김두일;이상호;권지향;김형수;독고석;국지훈
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

정수처리에 이용되는 나노여과막시스템의 성능예측방법 확립 (Treatability Prediction Method for Nanofiltration Systems in Drinking Water Treatments)

  • 강미아;伊藤雅喜
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.572-581
    • /
    • 2005
  • This research is conducted to develop predictable method of real scale nanofiltration treatability with small scale nanofiltration experiments. As a result of comparing calculated values with measured values, they are in a good agreement for the concentrations in filtered water and concentrated water. The results of that are not affected by change of system recovery from 20% to 95%. The proposed method is produced using constant recovery of elements, that is, no considering the pressure change. we can predict filtrated flux and contaminant concentrations with the method. The method has the following steps. (1) Calculate recovery of each element with water quality level after fixing recovery elements, (2) Predict system recovery with recovery of elements in 1, 2, 3, and 4 banks, (3) Run small scale nanofiltration experiments in predicted water quality and (4) Simulate large scale nanofiltration system for forecasting actual water quality. As the cost for nanofiltration pretest will reduced if we use the proposed method, it will be a promising method for introducing nanofiltration to supply safe drinking water.

LSTM 모형을 이용한 하천 고탁수 발생 예측 연구 (Prediction of high turbidity in rivers using LSTM algorithm)

  • 박정수;이현호
    • 상하수도학회지
    • /
    • 제34권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.