• 제목/요약/키워드: Drilling torque

검색결과 70건 처리시간 0.022초

Drill가공시 Drill과 가공구명내벽과의 마찰이 절삭저항성분에 미치는 영향 (A Study on the Effect of the Components of Cutting Resistance upon Friction between Drill and Inside Wall of Drilled Hole in Drilling)

  • 구연욱
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.28-40
    • /
    • 1985
  • In this study, to check up on the effect of the components of cutting resistance upon friction between drill and inside wall of hole in drilling, the experiment was performed with individual specimen of carbon steel, cast iron, aluminium alloy under various cutting conditions: depth of hole, cutting speed, feed rate, shape and material of specimen. On the basis of the experimental results, the following conclusions are drawn; 1. The components of cutting resis- tance were increased in proportion to the increase of depth of hole owing to frictional resistance of drill margin and chip-jamming. 2. As feed rates increase, torque and thrust were increased. When comparing to the increasing rate for these components respecitively, thrust is higher tendency than torque. 3. As drill diameter increase, torque and thrust were increased. When comparing to the increasing rate for these components respectively, torque is higher tendency than thrust. 4. In the case of torque, the frictional resistance between drill margin and inside wall of drilled hole accounts for about 20 percent of carbon steel, 14 of cast iron, 10 aluminium alloy in drilling. But the effect of thrust force could be negligible. 5. Comparison between the theoretical and experimental results showed a close agreement so far as depth of hole is about three times of drill diameter. But there was a wide difference between them beyond the rane of three times, because of characteristics of the drilling process.

  • PDF

다면 드릴의 성능 해석과 최적화 (Analysis of multi-facet drill(MFD) performance and optimization of MFD geometry)

  • 이상조;윤영식
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1523-1532
    • /
    • 1990
  • 본 연구에서는 다면드릴을 연구 대상으로 하여 다면 드릴의 기하학적 형상인 자들을 이용하여 드릴 작업시 추력과 토크를 예측하는 데 적합한 절삭력 예측 모델을 유도하였으며, 추력과 토크를 최소화하는 방향으로 다면드릴의 각 형상인자를 최적화 하였다.

모터전류를 기초로 한 드릴 마멸 모델링과 실시간 마멸 추정 (Drill Wear Modelling based on Motor Current and Application to Real-time Wear Estimation)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.77-87
    • /
    • 1995
  • In-process detection of drill wear is one of the most important technoligies for automatic, unmaned machining systems. In this study, an on-line drill wear estimation model based on spindle/Z-axis motor currents generated during the drilling process is proposed. The theoretical model is obtained by integrating the drilling process model and the servomechanism model. The drilling process model describes the relationship of drill wear and drilling torque/ thrust force, whereas the servomechanism model describes the relationship of drilling torque/ thrust force applied to motor and spindle/Z-axis motor current. Evaluation tests have shown that the proposed model is a good real-time estimator for drill wear.

  • PDF

토크와 드래그를 고려한 시추궤도 모델링 연구 (Well Trajectory Modelling Considering Torque and Drag)

  • 김지훈;최준형;김도영;박태일;이대성
    • 한국지반환경공학회 논문집
    • /
    • 제24권1호
    • /
    • pp.51-60
    • /
    • 2023
  • 수직 시추와 다르게 방향성 시추작업에서 발생하는 드릴스트링(drill string) 변형, 케이싱(casing) 마모, 키 씨팅(key seating) 등의 문제를 방지하기 위해서는 시추 궤도 내에서 발생하는 토크(torque)와 드래그(drag)가 최소화되어야 한다. 토크와 드래그의 크기는 시추 궤도 형태, 이수(mud), 드릴스트링의 종류 그리고 킥오프 지점(KOP, kick-off point)과 같은 매개변수들에 의해 결정되기 때문에 시추 궤도 설계 과정에서 고려하여 설계하여야 한다. 본 연구에서는 가장 일반적인 방향성 시추 궤도인 빌드-홀드(Build-hold) 형태의 시추 궤도에 킥오프 지점이 각기 다른 시추 궤도를 선정하였고, 분포하중 모델(analytical friction model)을 이용하여 각 구간내에서의 분포하중을 계산하여 궤도 전체에 대한 토크와 드래그를 계산하였다. 또한 매개변수에 따른 분석 값을 비교하여 분포하중이 최소로 발생하는 최적의 시추 궤도를 선정하였다. 분석결과 분포 하중을 최소화하기 위해서는 윤활성이 높은 이수를 사용, 궤도 형태에 따른 알맞은 킥오프 지점과 가능한 최소의 도그-래그를 지정하여 설계하는 것이 효과적임을 알 수 있었다. 이러한 결과는 분포하중을 최소화하기 위한 모든 방향성 시추 궤도 설계에 사용된다.

STS 304 배관재의 드릴가공시 공구마모에 관한 연구 (A Study on Tool Wear in Drilling STS 304 Steel Pipe Material)

  • 문상돈
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.73-79
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and tool wear of STS 304 steel pipe material for piping. In order to determine the effects of cutting parameters and tool wear on thrust, torque, AE RMS, drilling is conducted on CNC milling machine. In this experiment, it is measured that thrust, torque, tool wear length, tool wear area and AE RMS during drilling using Hss tool. It has been found that a) During the drilling, the thrust and the torque of the STS 304 pipe are received more the effect of the feed than the spindle speed and the thrust increase with the increase of feed, b) The value of the AE RMS is been larger the effect of the cutting speed than the feed rate, and the value of the AE RMS increase with the increase of spindle speed, c) It has been found that the suitable feed in feed condition of 0.03, 0.05, 0.1, 0.15mm/rev is below 0.05mm/rev, d) The value of the AE RMS was shown a characteristic of the jump value during it was a sudden inrcrease of the tool wear. The increased character of the AE RMS value can be known an effective factor of the tool wear detection, and e) It can be quantitatively evaluated the condition of the tool according to calculate a area of the drill wear image which is obtained by a vision system.

  • PDF

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

드릴가공에 있어서 동적성분의 특성에 관한 연구 (A Study on Characteristic of the Dynamic Component in Drilling)

  • 전언찬;예규현
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.36-46
    • /
    • 1991
  • This study was carried out to investigate the characteristic of dynamic component in drilling. Materials used were carbon steel, brass and cast iron, and the drills used were high speed steel drill and cemented carbide. The cutting resistance generated in drilling was detected with the aid of piez0-electric tool dynamometer which has an excellent frequency response, and then the magnitude and shape of dynamic component and its frequency component as well were analyuzed. After a thorough study of interrelationship, the obtained results are as follows; 1) The shape of torque and thrust of the early drilling are different. 2) The shapes of dynamic component can be classified into four kinds. 3) Torque is related to frequency more closely than thrust. 4) As cutting speed increased, dynamic component increased. 5) Chipping took place continuously, and its size decreased as cutting proceeded.

  • PDF

후판의 Drill가공에 있어서 Burr의 생성에 관한 연구 (Study on the Burr Formation in Drilling a Thick Plate)

  • 최성규;양균의;김태영;서남섭
    • 한국정밀공학회지
    • /
    • 제3권3호
    • /
    • pp.30-39
    • /
    • 1986
  • The burr worsens the accuracy of a workpiece and decreases a lot of pro- ductivity because it takes so much time and efforts to remove it. In this paper, the height, thickness and size of a drilling burr were derived from the drilling variables of drill diameter, chisel edge angle, web rate =($\Frac{2{\times}\;web\;thickness}{drill\;dia}$) and yielding stress of the workpiece as wel as feed, point angle and helix angle. The theoretical and experimental values of drilling thrust, torque and burr size of the testpiece were analyzed with the method of numerical analysis in a standard drilling condition. The order of choosing the drilling variables for the purpose of controlling the burr size was dealt in this paper with burr forming ratio. The results are as follows: (1) The drill diameter forms 42 percents feed 25 percents point angle 23 percents and web rate, chisel edge angle and gelix angle 5 percents of the partial differential slope of drilling thrust within the usual available ranges of drilling variables. (2) The drill diameter forms 55 percents feed 26 percents web rate 9 percents and chisel edge angle, point angle and helix angle 10 percents of the par- tial differential slope of drilling torque in the usual available ranges of drilling variables. (3) About 70 percents of the burr size can be controlled by feed, 29 percents by web rate in the case of a fixed diameter. It is recommended drilling10 variables to be chosen in the order of feed, web rate, drill diameter, point angle, chisel edge angle and helix angle so as to control the burr size effectively.

  • PDF

BTA드릴가공의 절삭성능에 관한 연구 (A Study on Cutting Performance of the BTA Drilling)

  • 장성규;김순경;전언찬
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.65-72
    • /
    • 1998
  • The BTA drilling chip is better for deep hole drilling than other self-piloting with pad drilling chips because the large length to diameter ratio allows a unique cutting force dispersion and better supplies the high pressure fluid. Therefore the BTA is useful for many tasks, such as coolant hole drilling of large scale dies, as well as tube seat drilling, which is essential for the heat exchanger, and variable component drilling for automobiles. Deep hole drilling has several significant problems, such as hole deviation, hole over-size, circularity, straightness, and surface roughness. The reasons for these problems, which often result in quality short comings, are an alignment of the BTA drilling system and the unbalance of cutting force by work piece and tool shape. This paper analyzes the properties through an experiment which com¬pared single-edge BTA drills with multiple-edge BTA drills, as well as the shapes of the tools to cause an unbalance of cutting force, and its effect on the precision of the worked hole. Conclusions are as follows. 1) In SMSSC drilling, 60m/min of BTA with single and multi-edged tools proved the best cutting condition and the lowest wear character. 2) The roundness got a little worse as cutting speed was increased, but surface roughness was hot affected. 3) It was proved that the burnishing torque of both drills approached 26%. which is almost the same as the 24% insisted on by Griffiths, and the dispersion characteristic of the multi-edged BTA drill proved better than the single-edge BTA drill.

  • PDF

신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시 (Chip Disposal State Monitoring in Drilling Using Neural Network)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF