• Title/Summary/Keyword: Drilling fluid

Search Result 87, Processing Time 0.026 seconds

Changes in Physical and Chemical Properties of Sandy Loam Soils by Hematite Addition (적철석 첨가에 의한 사질양토의 물리·화학적 특성변화)

  • Kim, Jae Gon;Dixon, Joe B.;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.291-296
    • /
    • 1998
  • Pedogenic hematite is a well known agent for sink of pollutants and nutrients and for aggregation of particles in soils. Changes in physical and chemical properties of two sandy loam soils (Anahuac and Crowley soils) from the Southern Coastal Plain, the United States of America, were tested after adding finely ground crystalline hematite prepared for drilling fluid weighting material. There was an increase in hydraulic conductivity (HC) of the soils with addition of up to 3% by weight of hematite but a decrease in HC with addition of more hematite. The aggregate stability (AS) of the soils was not affected by adding hematite. Anahuac soil with higher content of organic matter and lower sodium adsorption ratio (SAR) had higher values of HC and AS than Crowley soil. Adding hematite also resulted in a slight increase in zinc (Zn) adsorption by the soils, but had no influence on the adsorption of phosphate.

  • PDF

Review of EOR Market and Technical Development Trends (석유회수증진기술의 시장 및 개발기술 동향)

  • Kim, Hyun-Tae;Lee, Kun-Sang;Son, Han-Am;Yoo, In-Hang
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • With the decline in discoveries of new oil fields and increasing demand from developing countries it is believed that enhanced oil recovery (EOR) technologies will play a key role to meet the energy demand in years to come. Based on the recently-published data, this paper discusses current status of global EOR market and technical development trends. The EOR market includes oil produced through various EOR recovery methods, such as thermal recovery, gas injection, chemical injection. Also, EOR methods are addressed screening criteria by reservoir and fluid characteristics including lithology, depth, thickness, and oil properties such as composition and gravity. Finally, the examples of field applied by various EOR methods are discussed with respect to reservoir characteristics and performance.

A study on the characteristics of electrochemical deburring in the governor shaft cross hole (거버너샤프트 교차구멍 내경의 전해디버링 특성에 관한 연구)

  • Choi, In-Hyu;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1984-1991
    • /
    • 1997
  • Recently burr technology is rising in the fields of the precision manufacturing and the high quality machining, deburring has treated as a difficult problem on going to the high efficiency, automation in the FMS. Removal of burr with various shapes, dimensions and properties couldn't be standardized and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrochemical method is proper as its solution at practical aspects. Burr elimination in the cross hole drilling of governor shaft used in the automobile engine so far has been worked by a manual post-processing by a skillful worker, which becomes a factor of productivity-down and cost-up so that improvement of machining process is needed. Therefore, for the high efficiency and automation of internal deburring in the cross hole, development of electrochemical deburring technology is needed. So, the new process in the burr treatment is supposed. In this study, characteristics of electrochemical deburring through experiments were identified and factors such as electrolytic gap and electorlytic fluid contributed to removal burr height were analyzed. Also, deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrochemical deburring condition corresponding to acquired edge quality was found out.

A Parametric Study for Estimating the Side Performance of Drilled Piers Socketed in Smeared Rock (스미어 현상이 발생한 암반에 근입된 현장타설말뚝의 주변부 거동예측을 위한 변수분석)

  • Kim, Hongtaek;Nam, Yelwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Just as infill material can reduce the shear strength of a rock joint, a layer of soft material between concrete and the surrounding rock socket can reduce pile shaft resistance of drilled shafts socketed in rocks. This can also result from construction methods that leave smeared or remoulded rock or drilling fluid residue on the sides of the rock sockets after concrete placement. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by construction practice. Characteristics of the concrete-rock interface, such as roughness and the presence of the soft materials deposited during or after construction can significantly affect the shaft resistance response of the pile. In this study, we conducted the parametric study to examine the performance characteristics of drilled shafts socketed in smeared rock under the vertical load with the code of finite difference method of FLAC 2D. As the results of the current research, the parameters that affect the settlement of the pile head and the ultimate unit shaft resistance could be identified.

  • PDF

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

The genesis of Ulsan carbonate rocks: a possibility of carbonatite\ulcorner (울산 광산에 분포하는 탄산염암체의 성인에 관한 연구: 카보내타이트의 가능성)

  • 양경희;황진연;옥수석
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • A small of carbonate rocks and spatially-associated ultramafic rocks uniquely occur in the ulsan iron-serpentine mine of the sourtheastern Kyungsang basin. The study of field geology, core drilling data and stable isotope analysis suggest that the carbonate rocks are carbonatite formed from the melt reflecting intrusive natures. Based on this study, the geology of the Ulsan iron-serpentinite mining area consists of Cretaceous sedimentary, volcanic, granitic ultramafic and carbonate rocks in ascending order. The carbonate and ultramafic rocks show concentric and ellipsoidal shapes at the outcrop and a funnel shape in the cross sectional view. Carbon and oxygen stable isotope analysis show a bimodal pattern rather than a typical mantle pattern, which may indicate that the melt was a secondary melt generated within the crus not in the mantle directly. The uprising of ultramafic melts would have melted lime-contained rocks forming a secondary carbonate melt in the upper crus. Then, the intrusion of the ultramafic melts would have melted lime-contained rocks forming a secondary carbonate melt in the upper crust. Then, the intrusion of the ultramafic melt was followed by the intrusion of the carbonate melt along deep-seated fractures. Well-developed major fractures in this area, fluid inclusion characteristics of the carbonate rocks, the spatial relation between the ultramafic and carbonate rocks and stable isotope data support interpreting the Ulsan carbonate rocks as carbonatite.

  • PDF

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.