• Title/Summary/Keyword: Drilling Technique

Search Result 131, Processing Time 0.022 seconds

Identification of Hazards for Offshore Drilling through Accident Statistics and JSA-based Risk Reduction (사고 통계 분석을 통한 해양 시추작업 위험요소 제시 및 JSA 기반 위험저감 방안)

  • Noh, Hyonjeong;Kang, Kwangu;Park, Min-Bong;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.865-874
    • /
    • 2020
  • Offshore drilling units have a very dangerous working conditions due to the harsh working environment of the ocean and the high possibility of fire or explosion. This study would identify the hazards that emerge from the marine environment in the operation and maintenance phase of offshore drilling units and show how these hazards can be reduced through risk assessment/management. Various risk reduction and management measures were first reviewed, and Job Safety Analysis (JSA) was selected as the risk assessment technique of this study. In order to understand the characteristics of offshore drilling operations, accident statistics of onshore and offshore drilling were analyzed and compared with each other, and major risk factors for offshore drilling were derived. The jobs in which offshore drilling accidents occur more frequently than onshore drilling was analyzed as the job of fastening, transporting and moving pipes and various materials. This result is due to the limited space of the ocean and the work environment that is prone to being shaken by wind, waves and ocean currents. Based on these statistical results, the job of picking and making up drill pipes was selected as a high-risk job, and JSA was performed as an example. A detailed safety check procedure is proposed so that workers can fully recognize the danger and perform work in a safe state that has been confirmed.

A Study on the Burr Minimization of Drilling Process by Optimal Velocity Profile Tracking (이상적 속도 궤적을 이용한 드릴링 공정의 버 최소화에 관한 연구)

  • Park, Min-Suk;Jeon, Do-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.116-121
    • /
    • 1999
  • At the exit stage of drilling, the burr generates and deburring process is required to remove it. Since the additional process reduces productivity, a burr minimization technique is necessary in the servo system of drilling machines. In this research, cutting force is modelled with tool geometry and the optimal velocity profile with which the desired cutting force maintains is generated to minimize burr. Experiments show that the proposed velocity profile tracking effectively minimizes burr compared to the constant velocity feed.

  • PDF

Patterns of Resistographs for Evaluating Deteriorated Structural Wood Members

  • LEE, Jun Jae;KIM, Kwang Chul;BAE, Mun Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.45-54
    • /
    • 2003
  • The density and strength of wood is affected by degradations and defects, such as voids and knots. Old wooden structures such as traditional cultural properties have been deteriorated by these types of defects. They were evaluated by a visual observation that is difficult to evaluate the inner deterioration in structures. In this study, three nondestructive testing techniques were investigated to detect the wooden structural members. Ultrasonic stress wave tests, drilling resistance tests and visual inspections were used to examine the structural wood members. Patterns of Resistograph using by drilling resistance tests could indicate the features of internal wood such as voids, knots, decay, fungi, and so on. The technique just like as ultrasonic stress wave tests, however, difficult to detect exactly area where small amounts of internal deterioration in logs are. In spite of results of ultrasonic stress wave test, the internal deterioration of wooden structural members could be evaluated by the relationship between ultrasonic stress wave tests and drilling resistance tests.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

The effect of implant drilling speed on the composition of particle collected during site preparation

  • Jeong, Chang-Hee;Kim, Do-Young;Shin, Seung-Yun;Hong, Jong-Rak;Kye, Seung-Beom;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.253-259
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of implant drilling speed on the composition of particle size of collected bone debris. Methods: $Br{\aa}nemark$ $System^{(R)}$ drills were used to collect bone debris from 10 drilling holes (1 unit) at 1,500 rpm (Group A) and 800 rpm (Group B) in bovine mandible. After separating particles by size into > 500 ${\mu}m$, between 250 ${\mu}m$ and 500 ${\mu}m$, and < 250 ${\mu}m$ fractions, particle wet volume, dry volume, and weight were measured and the proportion of 3 fractions of bone debris to total wet volume, dry volume and weight was calculated as wet volume % , dry volume % and weight %. Results: No significant differences were found between Group A and B in wet volume, dry volume, and weight. However, of >500 ${\mu}m$ fractions, Group B had significantly higher wet volume %(P = 0.0059) and dry volume %(P = 0.0272) than in Group A. Conclusions: The drilling speed influenced the composition of particle size in collected drilling bone debris. The drilling in 800 rpm produced the more percentage of large particles than in 1,500 rpm. However, the drilling speed didn't effect on total volume of and weight of bone debris.

Evaluation of delamination in the drilling of CFRP composites

  • Feroz, Shaik;Ramakrishna, Malkapuram;K. Chandra, Shekar;P. Dhaval, Varma
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.375-390
    • /
    • 2022
  • Carbon Fiber Reinforced Polymer (CFRP) composite provides outstanding mechanical capabilities and is therefore popular in the automotive and aerospace industries. Drilling is a common final production technique for composite laminates however, drilling high-strength composite laminates is extremely complex and challenging. The delamination of composites during the drilling at the entry and exit of the hole has a severe impact on the results of the holes surface and the material properties. The major goal of this research is to investigate contemporary industry solutions for drilling CFRP composites: enhanced edge geometries of cutting tools. This study examined the occurrence of delamination at the entry and exit of the hole during the drilling. For each of the 80°, 90°, and 118°point angle uncoated Brad point, Dagger, and Twist solid carbide drills, Taguchi design of experiments were undertaken. Cutting parameters included three variable cutting speeds (100-125-150 m/min) and feed rates (0.1-0.2-0.3 mm/rev). Brad point drills induced less delamination than dagger and twist drills, according to the research, and the best cutting parameters were found to be a combination of maximum cutting speed, minimum feed rate, and low drill point angle (V:150 m/min, f: 0.1 mm/rev, θ: 80°). The feed rate was determined to be the most efficient factor in preventing hole entry and exit delamination using analysis of variance (ANOVA). Regression analysis was used to create first-degree mathematical models for each cutting tool's entrance and exit delamination components. The results of optimization, mathematical modelling, and experimental tests are thought to be reasonably coherent based on the information obtained.

Field Application of an Ultrasonic Testing for Reconstructing CT Images of Wooden Columns

  • Lee, Sang-Joon;Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • This research examined the applicability of using an ultrasonic test to reconstruct CT images of an ancient wooden building. Most of the columns in the building are severely deteriorated due to termite attacks or the effect of weathering. Ultrasonic CT images of the columns were used to create highly accurate digital reconstructions, despite a lack of the data caused by parts of the building walls being buried. Another semi-NDE technique, a drilling test based on resistography, was applied in order to verify the ultrasonic test results. The discrepancy in detection between two methods is believed to be due to the fundamental differences between two methods. The performance of the ultrasonic test was hindered by poor surface conditions and this technique tended to over-estimate the size of cavities produced by termites or other insects. Nevertheless, the deterioration detected was in many ways congruent with the drilling test results

Drilling Techniques for Geothermal Well and Environmental Impacts (지열발전을 위한 지열정 굴착기법과 환경영향)

  • Jeoung, Jae-Hyeung
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 2007
  • 국토가 좁고 천연자원이 부족한 우리나라에서 전기생산의 대부분을 원자력 발전에 의존하고, 화력발전을 많이 활용하는 것은 당연한 일이다. 그러나, 각종 신기술의 개발과 함께 신에너지원에 대한 가능성이 증대되고 있어 이에 대한 연구와 투자도 소홀히 할 수 없는 상황에 있다. 신에너지원으로 거론되는 여러 가지 대안 가운데 비교적 국내기술로 접근하기 쉬운 부분이 지열을 활용한 분야이다. 일본, 필리핀, 인도네시아와 같은 화산국은 물론이고 우리나라와 같이 활화산이 없는 나라에서도 대심도에서는 지열자원이 고르게 분포해해 있을 것으로 추정되어 개발된 지열활용기술은 그 수요처가 상당히 젊다고 할 수 있다. 본 연구에서는 지열활용을 위하여 필수적으로 사용되는 지열정 굴착기법과 건설에 따라 우려되는 환경영향을 정리하였다. 지열활용에 사용되는 지열정의 종류를 파악하고, 그에 따른 굴착기술을 소개하였으며, 저비용 고효율 굴착을 위한 요소기술들을 정리하였다. 그리고, 국외의 자료를 통하여 지열발전 프로젝트에서 우려되는 환경영향을 조사하여 국내의 상황과 비교하여 고찰하였다.

  • PDF

A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 공구 제작)

  • 이현우;최헌종;이석우;최재영;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.