• Title/Summary/Keyword: Drifter

Search Result 47, Processing Time 0.028 seconds

A Study on Comparison of Satellite-Tracked Drifter Temperature with Satellite-Derived Sea Surface Temperature of NOAA/NESDIS

  • Park, Kyung-Ae;Chung, Joug-Yul;Kim, Kuh;Choi, Byung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.83-107
    • /
    • 1994
  • Sea surface temperatures (SSTs) estimated by using the operational SST derivation equations of NOAA/NESDIS were compared with satellite-tracked drifter temperatures. As a result of eliminating cloud-filled or contaminated pixels through several cloud tests, 69 matchup points between the drifter temperatures and the SSTs estimated with NOAA satellite 9, 10. 11 and 12 data from August, 1993 to July, 1994 were collected. Multi-channel sea surface temperature(MCSST) using a split window technique showed an approximately $1.0{\circ}C$ rms error as compared with the drifting buoy temperatures for 69 coincidences. Accuracies for satellete-derived sea surface temperatures were evaluated for only NOAA-11 AVHRR data which had relatively large matchups of 35points as compared with other satellites. For the comparison of the oberved temperatures with the calculated SSTs, linear MCSST and nonlinear cross product sea surface temperature(CPSST) algorithms by the split, the dual and the triple window technique were used respectively. As a result, the split window CPSSTs showed the smallest rms error of $0.72{\circ}C$. Defferences between the split window SSTs and the drifter temperatures appeared th have a linear tendency against the drifter temperatures and also against the differences between AVHRR channel 4 and 5 brighness temperatures. This indicates some possibilities that satelite-derived SSTs operationally calculated from the NOAA/NESDIS equation in the seas around Korea have been underestimated as compared with actural SSTs in case sea water temperature is relatively low or the atmosphere over the sea surface is very dry like in winter, while overstimated in case of high temperature or very moist atmospheric equations based on local sea measurements around Korea instead of global measurements should be derived.

Study of a Recurring Anticyclonic Eddy off Wonsan Coast in Northern Korea Using Satellite Tracking Drifter, Satellite Ocean Color and Sea Surface Temperature Imagery (위성원격탐사를 이용한 동해 원산연안의 재발생 와동류 연구)

  • 서영상;장이현;김정희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2000
  • Even though recurring eddies at the terminal end of the East Korean Warm Current have been identified in the thermal infrared imagery from the NOAA/AVHRR sensor and ocean color data from Orbview-2/SeaWiFS sensor, it is difficult to make observation in the field regarding recurring eddies located around the Wonsan coastal area in North Korea. But we could get in situ data related to an eddy from an ARGOS satellite tracking drifter trapped in the eddy on January 4th, 1999. An ARGOS drifter, a NOAA satellite tracked buoy was trapped by the eddy during January 4th.March 18, 1999. The ARGOS drifter rotated 10 times per 72 days on the edge of the eddy located at $39^{\circ}N$, $129^{\circ}E$. The diameter of the eddy was about 100 km. The horizontal rotation velocity of the recurring cold-core anti-cyclonic eddy was 1.53 km/h(42 cm/sec). The sea surface temperatures of the eddy varied from $14.7^{\circ}C$ on January 5, 1999 to $9.6^{\circ}C$ on March 18,1999. To study the mechanism of the recurring eddy. we tried to find out the relationship between the vector of the drifter moving in the eddy and the wind vector in Sokcho and Ulleung Island located near the eddy in southern Korea, and the difference in sea level between Ulleung Island and Mukho. We hope the results of this study would be useful for calibration and validation data of simulation and numerical modeling studies of the recurring eddy.

Potential of Argo Drifters for Estimating Biological Production within the Water Column

  • Son, Seung-Hyun;Boss, Emmanuel;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.121-124
    • /
    • 2006
  • Argo drifters provide information of the vertical structure in the water column and have a potential for the improvement of understanding phytoplankton primary production and biogeochemical cycles in combination with ocean color satellite data, which can obtain the horizontal distribution of phytoplankton biomass in the surface layer. Our examples show that using Argo drifters with satellite-measured horizontal distribution of phytoplankton biomass at the sea surface allow an improved understanding of the development of the spring bloom. The other possible uses of Argo drifter are discussed.

Some High-Frequency Variability of Currents Obtained by "GeoDrifters" in the Tsushima Current Region

  • Seung, Young Ho;Park, Jong Jin;Kwon, Young-Yeon;Kim, Sung-Joon;Kim, Hong-Sun;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • The "GeoDrifter" is a newly-developed surface drifter with high temporal resolution. It is the first time that high-frequency drifters have been deployed in the East/Japan Sea. The purpose of this study is to introduce the phenomena experienced by these drifters flowing along with the Tsushima Current across the East/Japan Sea, focusing on high-frequency variability, and to discuss them in comparison with previous observations. The observed basin-scale circulation of the Tsushima Current generally coincides well with the known schematic circulation. The GeoDrifter trajectories also show inertial oscillations almost everywhere in the oceanic regions of the East/Japan Sea, strong semi-diurnal tidal currents in the western part of Korea Strait, diurnal currents much stronger than semi-diurnal currents in the upstream region of the Nearshore Branch off the Japanese coast, and many warm eddies in the Yamato Basin, all comparable to the observational results reported in the previous studies. An interesting point is that the semi-diurnal tidal currents undergo a great spatial variation in the western part of the Korea Strait. The observed features that cannot be explained are, among others, strong counter-clockwise motions with oscillating period about 51 hours appearing in the upstream region of the Nearshore Branch off the Japanese coast and the different tidal behaviors between upstream and downstream regions of the latter.

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Lee, Eun-Young;Chung, Sung-Rae;Sohn, Eun-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.663-675
    • /
    • 2011
  • Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

An Estimation of Tidal Currents from Satellite-tracked Drifters and its Application to the Yellow Sea

  • Lee, Se-Ok;Cho, CHeol-Ho;Kang, Sok-Kuh;Lie, Heung-Jae
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.65-77
    • /
    • 2000
  • A simple but effective method has been developed for estimating diurnal and semi-diurnal tidal currents from trajectories of satellite-tracked drifters. The estimation method consists of separation of tidal current signals contained in the drifter trajectories, computation of undulations by diurnal and semi-diurnal currents, and correction of dominant diurnal and semi-diurnal tidal constituents. M$_2$ tidal currents estimated from drifter trajectories in the Yellow Sea are well consistent with those observed by moored current meters and this supports the validity of this method. We have constructed M$_2$ tidal current chart in the Yellow Sea by applying this method to available drifter trajectories collected during 1994-1998. According to this chart, M$_2$ current in the Yellow Sea rotates in the clockwise direction south of 35$^{\circ}$ 30'N but in the counterclockwise one to the north. Also it is found that the M$_2$ current is strong in the bank area northeast of the Changjiang River mouth and in the Korean coastal area, while it is weak in the deep central trough.

  • PDF

Validation of OpenDrift-Based Drifter Trajectory Prediction Technique for Maritime Search and Rescue

  • Ji-Chang Kim;Dae, Hun, Yu;Jung-eun Sim;Young-Tae Son;Ki-Young Bang;Sungwon Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.145-157
    • /
    • 2023
  • Due to a recent increase in maritime activities in South Korea, the frequency of maritime distress is escalating and poses a significant threat to lives and property. The aim of this study was to validate a drift trajectory prediction technique to help mitigate the damages caused by maritime distress incidents. In this study, OpenDrift was verified using satellite drifter data from the Korea Hydrographic and Oceanographic Agency. OpenDrift is a Monte-Carlo-based Lagrangian trajectory modeling framework that allows for considering leeway, an important factor in predicting the movement of floating marine objects. The simulation results showed no significant differences in the performance of drift trajectory prediction when considering leeway using four evaluation methods (normalized cumulative Lagrangian separation, root mean squared error, mean absolute error, and Euclidean distance). However, leeway improved the performance in an analysis of location prediction conformance for maritime search and rescue operations. Therefore, the findings of this study suggest that it is important to consider leeway in drift trajectory prediction for effective maritime search and rescue operations. The results could help with future research on drift trajectory prediction of various floating objects, including marine debris, satellite drifters, and sea ice.

Comparisons of Ocean Currents Observed from Drifters and TP/ERS in the East Sea

  • Lee, Dong-Kyu;Niiler, Pearn P.;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Ocean currents estimated from sea height anomalies derived from inter-calibrated TP/ERS are compared with daily mean currents measured with satellite-tracked drifters. The correlation coefficient between the geostrophic current from TP/ERS and surface current at 15 m depth from drifter tracks was found to be about 0.5. Due to the limitation of satellite ground tracks, small scale eddies less than 80 km are poorly resolved from TP/ERS. One of the interesting results of this study is that coastal currents along the eastern coast of Korea were well reproduced from sea height anomalies when the coastal currents were developed in association with eddies near the South Korean coast. The eddy kinetic energy (EKE) estimated from drifters, TP/ERS, and a numerical model are also compared. The EKE estimated from drifters was about 22 % higher than EKE calculated from TP/ERS. The pattern of low EKE level in the northern basin and high EKE level in the southern East Sea is shown in the EKE estimates derived from both the drifters and TP/ERS.

  • PDF

Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5 (고해상도 기후예측시스템의 표층해류 예측성능 평가)

  • Lee, Hyomee;Chang, Pil-Hun;Kang, KiRyong;Kang, Hyun-Suk;Kim, Yoonjae
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.