• Title/Summary/Keyword: Dried Fine Aggregate

Search Result 8, Processing Time 0.027 seconds

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

A Fundamental Study on Properties of Method of Packaged Dry Combined Materials for Concrete -based on using high absorption aggregate- (건조된 재료를 혼합 포장한 콘크리트의 특성에 관한 기초적 연구 -흡수율이 높은 골재 사용 중심으로 -)

  • Han, Da-Hee;Kim, Kwan-Ki;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.115-121
    • /
    • 2007
  • Ordinary concrete uses aggregate sufficiently soaked with water, and is weighed, mixed with other materials and placed in accord with performances required in the construction field. Recently special concrete with high fluidity and durability is required but it is difficult to use top-quality concrete due to lack of high-quality aggregate, delayed transportation because of traffic jam, etc. In addition, sometimes the use of a remicon is inevitable just for small-sized concrete constructions or it is difficult for a remicon to reach remote construction places such as mountainous areas. To solve these problems, this study attempted to pack concrete materials. In other words, it is to instantize concrete. This study dried aggregate, a material of concrete, and compared the change of absorption phase of the aggregate in water and in paste in order to examine the effect of the dryness of aggregate on its absorption rate and, based on the absorption rate, decided water addition ratio necessary for the reduction of unit quantity caused by the use of dry aggregate in designing concrete mixture, and analyzed the properties of unhardened concrete according to water addition ratio in manufacturing concrete using aggregate in the state of absolute dryness and in the state of surface dryness.

A Study on Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate (폐목재의 활용을 위한 기술동향 분석 및 경량잔골재로서의 활용방안에 관한 연구)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.84-90
    • /
    • 2012
  • Patents in Korea, Japan and the U.S. were searched at the Korea Intellectual Property Rights Information Service (KIPRIS) of Korea Institute of Patent Information using related keywords in order to analyze the trend of patents on the usage of waste wood. Materials on a total of 77 patents in Korea, 317 patents in Japan, and 316 patents in the U.S. that had been registered as patents as of Dec. 31, 2011 were collected. Among the collected materials, the patents rejected, expired, annulled, withdrawn and waived as well as those which had little relationship with waste wood were excluded and the 71 patents in Korea, 227 patents in Japan and 216 patents in the U.S. were finally selected for analysis. In addition, the properties of the mortar which used waste wood as an alternative for a part of the fine aggregate were tested as a basic study for the usage of waste wood as a lightweight aggregate for concrete. For the test, the waste wood of the pine tree was crushed, sifted through No. 8(2.4 mm) sieve, and then dried for 24 hours at $100{\pm}5^{\circ}C$. As it is known that some kinds of tree prevent the hardening of cement when the wood is mixed with cement, the crushed waste wood in this study was dipped in the water of $20^{\circ}C$, $50^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$ and then dried up before testing the properties of the mortar to examine the effect of the preliminary treatment of crushed waste wood.

  • PDF

Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass (유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향)

  • Lee, Sang-Kook;Minner, David
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

Effect of Soil Grinding on Total Concentrations of As and Pb in Soil Determined by aqua regia Method (토양시료의 분쇄가 왕수분해법을 이용한 비소와 납의 전함량 분석 결과에 미치는 영향)

  • An, Jinsung;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • The effect of soil grinding on total As and Pb concentrations determined by aqua regia method was examined. Among six field-collected, air-dried soil samples tested, soils A, B, C, and E were directly sieved through a $150-{\mu}m$ sieve without grinding and showed 2.18 to 3.03 times higher total As concentrations and 2.62 to 3.45 times higher total Pb concentrations than those of the soil samples prepared to allow all soil particles to pass through the $150-{\mu}m$ sieve by grinding. The reason can be ascribed to the fact that those soils contain fine particles (i.e., < $150{\mu}m$ in diameter) only 4.6 to 6.8% of the total soil weights. On the other hand, for D and F soils, fine particles smaller than $150{\mu}m$ accounted for 57 and 46%, respectively, so that the effect of grinding on As and Pb concentrations were relatively low (As: 1.15 and 1.23 times, Pb: 1.36 and 1.49 times, respectively). The result demonstrates that grinding prior to $150-{\mu}m$ sieving is necessary to ensure the homogeneity of soil samples and hence to obtain more accurate heavy metal concentrations in soils. This is especially true for soil samples with less fine soil particles and/or microaggregates (i.e., below $150{\mu}m$).

Compressive Strength and Ecological Characteristics of Mortars Using Expanded Vermiculite Absorbing Bacteria (박테리아를 흡착한 팽창질석 기반의 친생태 모르타르 개발)

  • Yoon, Hyun-Sub;Jung, Seung-Bae;Yang, Keun-Hyeok;Lee, Sang-Seob;Lee, Jae-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The objective of this study is to evaluate the compressive strength development and ecological characteristics of mortars using expanded vermiculite absorbing bacteria as a fundamental investigation to develop precast eco-concrete products. For bacterial growth under the high-alkalinity and high-dried environments within hardened mortars and for creating plant growth function to mortars, Bacillus alcalophilus and Rhodoblastus acidophilus were separated and cultured. The cultured bacteria were absorbed into expanded vermiculite selected for bacteria shelter. The expanded vermiculite absorbing bacteria was then added into mortar mixture as a volumetric replacement of fine aggregate. Test results showed that the developed technology is very effective in enhancing the plant growth onto the hardened mortars and reducing the COD and T-N concentration in raw water. The optimum replacement level of expanded vermiculite absorbing bacteria can be recommended to be less than 10% considering the compressive strength development and cost of mortars along with the ecological effectiveness.

Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria

  • Falade, Oladele Fisayo;Rufai, Samsideen Olabiyi
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.116-127
    • /
    • 2021
  • Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The study was conducted to quantify carbon and base cations on soil mineral fractions in Natural Forest, Plantation Forest and Farm Land. Five 0.09 ha were demarcated alternately along 500 m long transect with an interval of 50 m in Natural Forest (NF), Plantation Forest (PF) and Farm Land (FL). Soil samples were collected with soil cores at 0-15, 15-30 and 30-45 cm depths in each plot. Soil core samples were oven-dried at 105℃ and soil bulk densities were computed. Sample (100 g) of each soil core was separated into >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.05 and <0.05 mm aggregates using dry sieve procedure and proportion determined. Carbon concentration of soil aggregates was determined using Loss-on-ignition method. Mineral fractions of soil depths were obtained using dispersion, sequential extraction and sedimentation methods of composite soil samples and sieved into <0.05 and >0.05 mm fractions. Cation exchange capacity of two mineral fractions was measured using spectrophotometry method. Data collected were analysed using descriptive and ANOVA at α0.05. Silt and sand particle size decreased while clay increased with increase in soil depth in NF and PF. Subsoil depth contained highest carbon stock in the PF. Carbon concentration increased with decrease in aggregate size in soil depths of NF and FL. Micro- (1-0.5, 0.5-0.05 and <0.05 mm) and macro-aggregates (>2.0 and 2-1.0 mm) were saturated with soil carbon in NF and FL, respectively. Cation exchange capacity of <0.05 mm was higher than >0.05 mm in soil depths of PF and FL. Fine silt (<0.05 mm) determine the cation exchange capacity in soil depths. Land use and mineral size influence the carbon and cation exchange capacity of Gambari Forest Reserve.