• Title/Summary/Keyword: Dredged fine-grained soils

Search Result 6, Processing Time 0.021 seconds

A Study on the Analysis of Reusability of Marine Dredged Fine-grained Soils (해양 준설세립토의 재사용성 분석에 관한 연구)

  • Kim, Chaemin;Mork, Jeongheum;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.5-12
    • /
    • 2015
  • A large amount of dredged soils occur in the marine purification project but dredged fine-grained soils have been abandoned as a waste. The standards as filling materials, banking materials, revetment blocks and concrete blocks were surveyed. Through the geotechnical tests of marine dredged fine-grained soils and the alkali-activation reaction, the usability as banking materials, revetment blocks and concrete blocks were analyzed. Dredged sands could be used as banking materials, and dredged fine-grained soils could be used as filling materials. A mixture of dredged fine-grained soils and dredged sands could be used as banking materials. Materials produced by the alkali-activation reaction could be used as a revetment block and a concrete block.

Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land (준설매립지반의 세립토가 액상화 강도에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Park, Sang-Jun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

A Study on the Sediment Volume Change and Two-dimensional Deposited Characteristics of Pumping-dredged Soil (준설토의 체적변화 및 2차원 퇴적특성에 관한 연구)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.155-165
    • /
    • 2003
  • A series of one-dimensional cylinder sedimentation test, seepage consolidation test and two-dimensional deposition model test were conducted to examine the characteristics of deposition and volume change of dredged soils containing the high water content, and these experimental results were compared with the sedimentary conditions of actual dredged-reclaimed fields to obtain the relations of a volume change by settling what is required for design. In addition, the change of water content and the distribution of fine grained soils after sedimentation were investigated. Thus, it was concluded that deposition height increased lineary as substantial soil volume increased, and also the elevation of interface increasea proportionately at both the starting time and the finishing time of virtual self-weight consolidation in one-dimensional sedimentation. Furthermore, the two-dimensional model test results were shown to describe the plain distribution of water content and fine grained silt where dredged soil was deposited by two dimensional flowing, and the water content was distributed to wide range from the minimum water content 30% to maximum 180% according to the passed amount of №200 sieve percentage.

세립분 함유량에 따른 새만금준설토의 액상화 특성에 관한 연구

  • Kim, You-Seong;Lee, Soo-Guen;Ko, Hyoung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1458-1465
    • /
    • 2010
  • A lot of dredging and reclaming projects are recently under way in Korea for the efficient use of limiting land space. Saemanguem area is special case of reclaiming by dredged soil. In case of a confined disposal of dredged soils by a pump dredger, generally coarse grained soils are separated from fines with dropping at the near part of the pump dredger. This kind of seperation of fine contents could be a factor of liquefaction by earthquake. In Korea, recently, earthquakes with magnitude of 3.0 or higher are distinctively increasing in 1990. In this study, cyclic shear characterics of Saemanguem Dredged sand depending on fine content were analyzed. A series of undrained cyclic triaxial test with cyclic stress ratio ($\sigma_d/{2\sigma_{{\upsilon}c}}'$) were performed on both isotropic consolidated specimen and sand with fine contents of 0%, 5%, 15%, 30%, 40% under the effective vertical stress of 100kPa and 50% and 60%, 70% of relative density for fine content of 0%, respectively. In the test results, cyclic shear strength increased by increasing of cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) with increasing the relative density at the same number of cyclic under the effective confining pressure of 100kPa. It is almost highest the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10% at fine content of 15% between Cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) value at cyclic number five and fine content. Number of cyclic is 30 under the effective vertical stress of 100kPa, 70% of relative density for fine content of 15%. when the cyclic stress ratio at each relative density was compared at cyclic number five, the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10%, and the pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value were compared; under the relative density of 70% and the effective confining pressure of 100kPa. The pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value showed a similar trend to the double amplitude (DA) 5% line.

  • PDF

REPORT ON CONSOLIDATION-INDUCED SOLUTE TRANSPORT

  • Lee, Jang-Guen
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.140-145
    • /
    • 2010
  • Consolidation in cohesive soils mainly focuses on compressibility of soils, but it affects solute transport in some cases. The consolidation process takes on particular significance for fine grained soils at high water content, such as dredged sediments, but has also been shown to be important for compacted clay liners during waste filling operation. Numerical investigation using CST1 and CST2 was reviewed on consolidation-induced solute transport in this paper, especially with the development of CST2 model, verification by comparing experimental results with numerical simulations, and cases studies regarding transport in a confined disposal facility (CDF) and during in-situ capping. The importance of the consolidation process on solute transport is accessed based on simulated concentration or mass breakthrough curves. Results indicate that neglecting transient consolidation effects may lead to significant errors in transport analyses, especially with soft contaminated cohesive soils undergoing large volume change.

  • PDF

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.