• Title/Summary/Keyword: Dredged Soil Recycling

Search Result 44, Processing Time 0.022 seconds

Analysis of economic and environmental value of dredged soil (준설토의 경제적·환경적 가치 분석)

  • Cho, Sung-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.659-665
    • /
    • 2013
  • Most of dredged soil generating millions of tons per year is treated as a waste disposing in ocean or landfill except some part of recycling. The purpose of this study is to present the prerequisite for the use of dredged soil as a resource and analyse economic and environmental values of the recycling of dredged soil. The analysis of the economic and environmental value of recycling of dredged soil as a resource showed that several trillion won of budget can be saved in construction of disposal area or landfill and that loss of about 50 million tons of aggregates from deforestation can be restored by supplyment of dredged soil preserving a mountain as big as the Namsan(Mt.) every year. In order to utilize dredged soil in more diverse areas as high value of resource, the related domestic laws are needed to be readjusted integrating laws spreaded in different government departments and a special law is prepared and enacted.

Preliminary Experiments on Pozzonalic Activity of Dredged Sea Soil (소성 해양 준설토의 포졸란 반응성 시험)

  • Kim, Ji-Hyun;Moon, Hoon;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.49-50
    • /
    • 2014
  • Dredged sea soil contains various contaminants. First priority to recycle dredged sea soil is to pretreat it to remove various contaminants because recycling dredge sea soil without any pre-treatment may cause a secondary contamination due to the leaching of hazardous chemicals. In this study, pretreated dredged sea soil was used to investigate pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined to evaluate pozzolanic activity. According to the results, pretreated dredged sea soil has some possibility to work as a pozzolanic material. When dredged sea soil was heat treated for 90min at 550℃, compressive strength was shown to be comparable to that of plain cement mortar.

  • PDF

Pozzolan Activity of Heat-treated Dredged Sea Soil (소성된 항만준설토의 포졸란 반응성 분석)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.43-44
    • /
    • 2016
  • Large amount of dredged sea soil is produced in southeast seashore region in during harbor maintenance. Disposal of dredged sea soil has become difficult due to the environmental regulation. Therefore, disposal of dredged sea soil method is to landfill. But, the capacity of the landfill limit state and if the size of the dredged sea soil is in the range of silt or clay, it cannot be used as reclamation material because ground subsidence occur. In this study, analyzed the pozzolanic activity of dredged sea soil. Analysis of the results showed a pozzolanic activity of dredged sea soil. In addition, incorporation of heat treated dredged sea soil increase both 28 and 56 day compressive strength of mortar specimen.

  • PDF

Compression Characteristics of Waste Tire Powder-Added Lightweight Soil (폐타이어 분말을 이용한 혼합경량토의 압축특성 연구)

  • Kang, Hyo-Sub;Kim, Yun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.774-781
    • /
    • 2009
  • The purpose of this study was to research on compressibility characteristics of waste tire powder-added lightweight soil(TLS) for recycling dredged soil, bottom ash and waste tire. The TLS used in this experiment consists of dredged soil, cement, waste tire powder and bottom ash. Test specimens were prepared with various content of waste tire powder ranged from 0% to 100% at 25% intervals by the dried weight of dredged soil. Several series of one-dimensional consolidation tests were carried out. Based on the experimental results, as the waste tire powder increased, the swelling index of TLS increased. The compression index and swelling index of the TLS with bottom ash content showed lower value than without bottom ash. Then, compressibility characteristics of TLS were strongly influenced by mixing conditions of waste tire powder content and bottom ash content.

  • PDF

Compressive Strength Characteristics of Cement Mixing Lightweight Soil For Recycling of Dredged Soil in Nakdong River Estuary (낙동강 하구역 준설토 재활용을 위한 시멘트 혼합경량토의 압축강도 특성 연구)

  • KIM YUN-TAE;KIM HONG-JOO;KWON YONG-KYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.7-15
    • /
    • 2006
  • In this research, the behavior characteristics of cement mixing lightweight soil (CMLS) for recycling of dredged soil in the Nakdong River estuary are experimentally investigated. CMLS is composed of the dredged soil from Nakdong River estuary, cement, and air foam. For this purpose, uniaxial compression tests are carried out for artificially prepared specimens of CMLS, with various initial water contents, cement contents, and mixing ratio of dredged soils. The experimental results of CMLS indicated that the compressive strength is strongly influenced by the cement contents, rather than water contents and air foam. Compressive strength of CMLS increased with an increase in cement content, while it decreased with an increase in water content and air foam content. It was also found that the modulus of deformation E50 was in a range of 44 to 128 times greater than the value of uniaxial compressive strength, cured in 28 days.

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

A Preliminary Investigation on Pozzolanic Activity of Dredged Sea Soil (소성 준설토의 포졸란 반응성에 대한 기초 연구)

  • Kim, Ji-Hyun;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.531-536
    • /
    • 2014
  • Recently, the amounts of dredge sea soil in south Korea have been increasing because of various maintenance works at harbors and rivers. Dredged sea soil contains various contaminants. Hence, prior to recycling the dredged sea soil, the various contaminants should be removed to prevent a secondary contamination due to the leaching of hazardous chemicals. Pretreated dredged sea soil can be buried under the ground or used for land reclamation. In this study, however, pretreated dredged sea soil was used to investigate the level of pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined. According to the XRF result, the main components of dredged sea soil were $SiO_2$ of over 55%, and $Al_2O_3$ and $SO_3$ of some amounts. Results from XRD and TG/DTA showed that pretreated dredged sea soil can be used as a pozzolanic material. When dredged sea soil was thermally treated for 90 min at $550^{\circ}C$, a compressive strength result was similar to that of control mortar.

A study of Geotechnical Property of Stone Filler and Sewage Dredged Soil as Construction Materials (하수준설토와 석분의 건설재료로 재활용을 위한 지반물성연구)

  • Chung, Jae-Wook;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Geotechnical and environmental properties of stone fillers are analyzed by several laboratory experiment to identify the possibility of recycling fillers and sewage dredged soils as construction materials. The result of geotechnjical test shows that the sewage dredged soil is a sandy soil which contains 70-80% sand and is useful as an aggregate of construction site. Stone filler has large fine content, which may disqualifies the use as construction materials. However, this material is still useful as a filler in stone quarries or finished mines. From the environmental test, the liquids leached from two types of materials have satisfied the standard of chemical substances in the soil environment law and no harmful effect in ground pollution is expected when recycling.

Experimental Study on Mechanical Properties of Monofilament-reinforced Bottom Ash Mixture for Recycling Dredged Soil (준설토를 이용한 단섬유 보강 Bottom Ash 혼합 경량토의 역학적 특성에 관한 실험적 연구)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2008
  • This paper investigates the mechanical characteristics of monofilament-reinforced bottom ash mixtures for recycling dredged soil. Reinforced bottom ash mixture is a lightweight soil added with monofilament in order to increase its shear strength. Test specimens were fabricated by various mixing conditions including monofilament content, its length and its diameter. Then several series of unconfined compression tests and direct shear tests were performed to investigate mechanical characteristics of reinforced lightweight soil. The experimental results indicated that stress-strain behaviors of reinforced lightweight soil were strongly influenced by mixing conditions of monofilament content, its length and diameter. The compressive strength of reinforced lightweight soil generally increased by adding monofilament. In this test, the maximum increase in compressive strength was obtained at 0.5% content and 4cm length of monofilament. These results were similar to those of direct shear tests. The unconfined compressive strength of reinforced lightweight soil with monofilament of 0.25mm in diameter was greater than that of reinforced lightweight soil with monofilament of 0.5mm in diameter.

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.