• 제목/요약/키워드: Drawing Rate

검색결과 256건 처리시간 0.027초

성형속도에 따른 AZ31판재의 온간 디프드로잉 성형성 연구 (A Study on the Forming Velocity Effect on the Warm Deep Drawing of AZ31 Sheet)

  • 김기덕;김흥규;김종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2007
  • Deep drawing of magnesium alloy sheet is conducted at elevated temperatures($200{\sim}300^{\circ}C$) to improve the press formability because of low formability at room temperature. Then magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, we conducted warm deep drawing tests of magnesium alloy AZ31 sheet for various punch velocities. We examined the forming velocity effect on the deep drawing formability and the correlation with the tensile test result.

  • PDF

디프드로잉에 의한 알루미늄합금판재의 집합조직 발달에 관한 연구 (Texture Evolution in Aluminum Alloy Sheets during Deep Drawing Process)

  • 최시훈;조재형;정관수;오규환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.140-147
    • /
    • 1998
  • The texture evolution by deep drawing was investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The calculated textures show different behaviors with the amount of the flange deformation and initial crystal orientations. Among the crystal orientations located parallel to RD, the crystal orientations around the D component rotated toward the Cu component, the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<001> and {110}<111> components during deep drawing. In the case of the part parallel to 45$^{\circ}$ with respect to RD, the crystal orientations around the D component rotated about ND and the crystal orientations along the ${\alpha}$ fiber also rotated toward the (110)[23] and (110)[27] components about ND. In the part parallel to TD, the crystal orientations around the D component rotated toward the Rotated Cube and the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<113> component.

가열냉각방법에 의한 마그네슘합금의 판재성형성 개선 (Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method)

  • 강대민
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

SUS-Al-Mg이종판재의 드로잉성형에 관한 연구 (A Study on the Clad Sheet Metal of the Warm Drawability)

  • 이영선;정택우;권용남;이정환;최상운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • The clad sheet is the sheet metal that joined the one or more material with the different property by rolling process. In this study, it is investigated about the mechanical property or formability of SUS-Al-Mg clad sheet. The clad sheet was formed at elevated temperature because of their poor formability at room temperature. The tensile test was confirmed at various temperature and the reduction of strain rate above $250^{\circ}C$. LDR(Limited Drawing Ratio) was obtained through deep drawing test to confirm the formability of the clad sheet. The FE analysis is performed to compare prototype products.

  • PDF

인공신경망을 이용한 다단 인발 공정 설계 (Process Design of Multi-Step Wire Drawing using Artificial Neural Network)

  • 김동환;김동진;김병민
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.127-138
    • /
    • 1998
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network) has been considered. The investigated problem involves the ade-quate selection of the drawing die angle and the correspondent reduction rate in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite ele-ment simulation are selected by using the orthogonal array. Also the orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study it is shown that the application of new technique using ANN and Othogonal array table to the process design of metal forming process is useful method.

  • PDF

신경망을 이용한 다단 인발의 공정설계 (Process Design of Multi-Step Drawing using Artificial Neural Network)

  • 김동환;김동진;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용 (Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet)

  • 이정민;이경수;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발 (Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰 (Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32))

  • 박상병;윤재웅
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.

정수기 냉온수 탱크 원통형 드로잉 제품의 재질 변화에 따른 두께 변화에 관한 연구 (A study on the change of thickness according to material change of water purifier cold and hot water tank cylindrical drawing products)

  • 장은정;이춘규
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.13-18
    • /
    • 2021
  • In plate forming technology, cylindrical drawing process is widely used in industry due to technological development. In this study, we used stainless steel 3042B and stainless steel 304J1, which are the most commonly used materials in the production of cold and hot water tanks for water purifiers, among cylindrical drawing products. Under the same conditions, the thickness of the sidewall of the product formed by drawn experiment was studied. As a result of the experiment, the bottom thickness of stainless steel 304J1 was considered to be thick. It is judged that the defect rate can be reduced by changing the breaking phenomenon of the floor surface of the cold and hot water bottles to the material of stainless steel 304j1. Stainless steel 304 2B material shows a sharp change in thickness from punch corner R to sidewall position, while stainless steel 304J1 material showed a uniform change from punch corner R to sidewall position. Stainless steel 304J1 material is considered to improve the clamping of the product in the process of extracting the product after hand drawing. The appearance of stainless steel 3042B products is considered to produce more wrinkles in the flange, which exerts greater tensile force on the sidewall during molding, resulting in uneven sidewall thickness.