• Title/Summary/Keyword: Drawability and planar anisotropy

Search Result 3, Processing Time 0.017 seconds

PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.259-268
    • /
    • 2005
  • In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

Plastic Strain Ratio and Planar Anisotropy of AA5182/Polypropylene/AA5182 Sandwich Sheets (알루미늄 5182/폴리프로필렌/알루미늄 5182 샌드위치 판재의 소성변형비 및 평면이방성)

  • 김기주;정효태
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.365-373
    • /
    • 2004
  • The sheet formability of single AA5182 sheets and sandwich sheets comprising of AA5182/polypropylene/AA5182 (AA/PP/AA) was studied. Rolling without lubrication and subsequent recrystallization annealing led to the formation of favorable {111}//ND fiber textures in AA5182 sheets, which provided a higher plastic strain ratio of $R_m=1.5$. $R_m$ value of 1.58 was obtained in the AA/PP/Ah sandwich sheet sample. Furthermore, a proper combination of the sample direction of the upper and lower skin sheet gave rise to an optimization of the sheet formability of the sandwich sheets.

Evaluation of Plastic Anisotropy in the Steel Sheets Using EMAT (EMAT를 이용한 판재의 소성이방성 평가)

  • Ahn, B.Y.;Kim, Y.G.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 1997
  • Plastic anisotropy is one of important factors which determine the drawability of a steel sheet. It has been mainly measured by mechanical tensile test. From the ultrasonic velocities propagating along the relative directions to the rolling direction, CODF(crystallite orientation distribution function) can be measured and ODC's(orientation distribution coefficients) has some correlations with the plastic anisotropy. In this study the correlations between the plastic anisotropy and ODC's of the cold rolled steel sheet were measured. From the results of ultrasonic velocity measurements the average normal anisotropy, $\bar{\gamma}$ and the average planar anisotropy, ${\Delta}r$ could be predicted within the accuracy of ${\pm}0.082$ and ${\pm}0.096$, respectively. Acoustic resonance method was applied to measure the ultrasonic velocities and EMAT's were used for generating and detecting the ultrasonic waves.

  • PDF