• Title/Summary/Keyword: Drainage pipes

Search Result 66, Processing Time 0.024 seconds

An Experimental Study on the Ultimate Strength and Deformation Capacity of Composite Beams with Eccentric Web Openings (편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구)

  • Choi, San Ho;Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.595-604
    • /
    • 2000
  • Web openings of large beams provide space for wiring, piping, and duct work to provide for proper drainage, pipes and duct must be slightly sloped with the attendant result that all web openings can not be centered on the centroidal axes of the beams. Test specimens are made for opening-depth to beam-depth ratio of 0.5 and for eccentricities of the opening center line of 10% from middepth of the beam because of the proximity of the opening edge to the flange. In this paper, available test results and theories relating to the strength of composite beams having eccentric rectangular openings are surveyed and experiments were carried out to examine the structural behaviors. In all the tests in this paper good agreement is demonstrated with maximum loads measured in tests, and observed failure modes Furthermore, compared with analytical values and experimental values of interaction diagram between moment and shear capacity were safed as it is scattered with outer part of the analytical values.

  • PDF

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

Comparative Analysis of the Storm Sewer Expansion Methodology and Underground Rainwater Storage Tanks for Urban Flood Control (기존 도시의 홍수저감을 위한 우수관거 배수용량 증대 및 지하 빗물저류조 설치효과 비교 분석)

  • Lee, Ho Yeol;Seo, Gyu Tae;Lee, Taek Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.754-761
    • /
    • 2013
  • Urban floods are usually caused by the lack of drainage capacity. Hence, sewer capacity expansion methodology by replacing small pipes with bigger ones is primarily applied as a flood control measure. However, this approach is often unreasonable because of the costs and time involved. Thus, the installation of underground rainwater storage tanks with the two advantages of flood control and water conservation is proposed. This study compared the effectiveness of flood control by both the sewer expansion methodology and rainwater storage tanks using the Storm Water Management Model. Three cases were simulated in this study. The first case analyzed flood reduction by the storm sewer expansion methodology. The simulation results indicate that the overflow volume from manholes was reduced by 49% with this methodology. The second case analyzed flood reduction by installation of rainwater storage tanks. The simulation results indicate that the overflow volume was reduced by 62%. However, these two cases could not prevent urban floods completely. Hence, the third case analyzed the joint application of the storm sewer expansion methodology and rainwater storage tanks. In this simulation, flooding did not occur. Consequently, the results of this study clearly show that underground rainwater storage tanks are more effective for flood control than capacity expansion of storm sewer. Furthermore, the joint application of these two flood control measures is more effective than their separate application.

A study on the Use of Low and Wet Land By Underdrainage(1) (암반비수에 의한 저온지이용에 관한 연구(1))

  • 주재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.2
    • /
    • pp.1454-1459
    • /
    • 1968
  • Althow underdrainage has been studied for long time, it is the first attempt in Korea to execute using PVC(Plastic) suction pipes in the low and wet field. First, an execution plot and a control plot were set, and the drainage method and soil temprature in the excuted plot have been examined. The growth of crops and the yeild, the improvement of soil and water quality of irrigation are to be dealt during the next experimental period. The experimental method and the results obtained through the experimentations are as follows: Method 1) Depth: 1meter. interval: 5meters Trench was performed by labor. 2) PVC(plastic) sucking pipe filters were wound with glass nylon. 3) Two. horizontal looks were set in the 5a. plot. Results 1) The soil temprature in the excuted plot went up by $1.2^{\circ}C$ in average than in the control plot during the two years(1966-67) of irrigation period, and the maximum temprature raised a day was $3^{\circ}C$ 2) The under ground water level in the executed plot went down by 45cm. 3) The yield increases were 64% in potato, 57% in barley, and 21% in rice. The yield, soil, and the quality of irrigated water will be experimented during the next experemental period.

  • PDF

Evaluation of effectiveness of Smart Water City in Korea - Smart Water City project in Paju City, Gyeonggi Province (한국 스마트워터시티의 효과성 평가 - 경기도 파주시 스마트워터시티 사업을 중심으로)

  • Lee, Yookyung;Lee, Seungho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.813-826
    • /
    • 2020
  • This study analyzes the effects of the Smart Water City (SWC) project that was introduced from 2014 to 2016 in Paju City, Gyeonggi Province, Korea, focusing on the achievement of the business goals. The SWC is referred to as a city that embraces a healthy water supply system based on Smart Water Management (SWM) that promotes the efficiency of water management by combining Information and Communication Technologies (ICTs) with water and sewerage facilities. In order to evaluate the effectiveness of the SWC project, this study deploys evaluation criteria corresponding to the project objectives, and analyzes the outputs before and after the project. The results show that the SWC has contributed to enhancing water supply services and the reliability and drinking rate of tap water. Specific improvement areas include the rise of average water flow rate and water leakage reduction, the diffusion of water quality monitoring system, and the reduction of floating particle concentration and turbidity in drainage pipes was achieved. These were possible because of specific implementation plans for clear goal setting and achievement and active services for citizens. The data related to water quantity and quality showed improved performance compared to before the introduction of SWMS, which is a positive effect. However, a quantitative analysis of the outputs has limitations in identifying other external factors that have led to the changes. In the future, guidelines for spreading SWC and more comprehensive and specific evaluation indicators for SWC should be prepared, and SWMS should be developed in consideration of the needs of users.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.