• Title/Summary/Keyword: Drainage performance

Search Result 226, Processing Time 0.026 seconds

A Study on the Performance Evaluation and Comparison of Porous and Drainage Pavement Types (투수성 포장과 배수성 포장 구조형식의 성능평가 및 비교 연구)

  • Kim, Dowan;Jeong, Sangseom;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.47-57
    • /
    • 2018
  • PURPOSES : The permeable pavement type has been rapidly developed for solving problems regarding traffic noise in the area of housing complex and heavy rainwater drainage in order to account for the climate change. In this regards, the objective of this study is to figure out the characteristics of pavement types. METHODS : The laboratory test for deriving optimum asphalt content (OAC) was conducted using the mixtures of the permeable asphalt surface for the pavement surface from Marshall compaction method. Based on its results, the pavement construction at the test field was conducted. After that, the site performance tests for measuring the traffic noise, strength and permeability were carried out for the relative evaluation in 2 months after the traffic opening. The specific site tests are noble close proximity method (NCPX), Light falling deflectometer test (LFWD) and the compact permeability test. RESULTS : The ordered highest values of the traffic noise level can be found such as normal dense graded asphalt, drainage and porous structure types. In the results from LFWD, the strength values of the porous and drainage asphalt types had been lower, but the strength of normal asphalt structure had relatively stayed high. CONCLUSIONS :The porous structure has been shown to perform significantly better in permeability and noise reduction than others. In addition to this study, the evaluation of the properties and the determination of the optimum thickness for the subgrade course under the porous pavement will be conducted using ground investigation technique in the further research.

Development of Nursing Practice Guideline for External Ventricular Drainage by Adaptation Process (수용개작을 통한 뇌실외배액 간호 실무지침 개발)

  • Jung, Won Kyung;Yi, Young Hee
    • Journal of Korean Clinical Nursing Research
    • /
    • v.22 no.3
    • /
    • pp.294-304
    • /
    • 2016
  • Purpose: This study was done to develop an evidence-based external ventricular drainage (EVD) nursing practice guideline in order to provide standardized nursing and prevent EVD related complications. Methods: We used the standardized methodology for nursing practice guideline adaptation developed by Korean Hospital Nurses Association for the guideline adaptation process in this study. Results: The newly developed EVD nursing practice guideline was adapted to the American Association of Neuroscience Nurses (AANN)'s clinical practice guideline which is 'Care of the patient undergoing intra-cranial pressure monitoring/external ventricular drainage of lumbar drainage.' There were 61 recommendations documented in the preliminary guideline all evaluated by 9 experts based on acceptability and applicability. The final practice guideline was composed of 3 domains with 57 recommendations. The three domains of nursing were the insertion, maintenance, and removal of the EVD. The number of recommendations in each domain was 8 in EVD insertions, 39 in EVD maintenance, and 10 in EVD removals. Of the 57 recommendations 3.5% were level 1, 31.5% were level 2, and 65% were level 3. Conclusion: The standardized practice guideline can improve nurses' performance and accuracy. It can also be used as the foundation for effective communication between all medical staff.

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Development of Silica Based Microgels and Evaluation of Their Performance in Microparticle Retention System

  • Kim, Tae-Young;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • The effectiveness of silica-based microgels prepared through the reaction of sulfuric acid and sodium silicate as a component of Compozil system has been evaluated . Silica based microgels with better performance in retention and drainage than a commercial colloidal silica sol have been successfully prepared. Silica gels with the highest charge density were obtained when product pH was controlled to 9. And highly charged silica-based microgels showed greater retention and freeness performance than a commerical product. In particular the difference in retention, turbidity , and freeness between these microgels and a commercial product was eminent at low addition rate. The effects of reaction conditions including reaction temperature, process water quality and feeing rate on product efficiency in improving retention and drainage were also investigated and discussed.

  • PDF

Application of PEO/Cofactor System on Papermaking Process for Recycled Fibers (재생 지료 공정에서의 PEO/cofactor 보류 시스템의 적용)

  • Jung, Chul-Hun;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Ionic trash in furnish decreases retention and drainage performance of the microparticle retention system using recycled fibers in closed papermaking system. Two retention systems, such as the microparticle system and the PEO/cofactor system, were compared and analyzed to improve retention. The PEO/cofactor system achieved similar retention performance at low addition level as the microparticle system. Optimum ratio of PEO/cofactor dual polymer system was 1:10. Ash retention was increased when using the fixing agent. As the TMP ratio increased, the PEO/cofactor system was more efficient in retention and drainage than the other system. The high molecular weight and non-ionic polymer retention system had less effect on flocculation hindrance than the traditional electrostatic retention system.

Assessment of Field Application of Contaminated Sediment Removal Efficiency Using PVDF Combined Hybrid Tunnel Drainage (PVDF(Polyvinylidene Fluoride) 필름형 트랜스듀서 하이브리드 터널배수재에 대한 오염퇴적물 제거효율의 현장 적용성 평가)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.513-519
    • /
    • 2019
  • Typically, contaminated sediments cause clogging of the drain pipe, which increases the residual water pressure in the drain pipe; this study constructed a system for improving drainage efficiency of tunnels by reducing physical and chemical obstructions through ultrasonic energy generated by a PVDF film. The developed hybrid drainage system utilized a PVDF material film fused with an existing drainage tunnel and maintenance system resulting in the ability to initialize the reverse piezoelectric effect, which was evaluated through an on site application. In order to investigate the maintenance performance of the tunnel drainage system, contaminated sediments were simulated in a drainage pipe to test the effect of ultrasonic conditions on drainage efficiency in the laboratory. As a result of applying the developed portable equipment, the ultrasonic energy was generated for about 20 minutes resulting in a reduction of 74.62% of the contaminated sediments and improving drainage efficiency. From the tunnel, acoustic pressure measurements were taken to calculate the response rate while taking into account the laboratory results. In addition, PVDF film was attached to the transverse and longitudinal side of the drainage pipes where contaminated sediments occur most often in the field tunnel. these calculations show contaminant removal was 90% effective.

Effects of the Surface Chemical Properties of Silica Sols on the Retention and Drainage of Microparticles Systems

  • Min, Choon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • The impact of major surface chemical properties of silica sols on the retention and drainage performance of the silica based micrparticle system, Compozil was investigated using four different silica sols. And the effect of silica properties on the interactions with cationic starch and cationic plyacrylamide has also been identified. The surface charge density and the stability over pH of silica sols were increased by introducing aluminosilicate anions at surface. It was found that the charge density of silica sols determined the addition level necessary to attain the maximum retention and drainage. When silica sols were combined with cationic starch, the change density of the product was the critical properties and the degree of microagregation was of minor importance. In the cationic polyacrylamide system the degree of colloid structure appeared to be a more critcial property than the charge density of silica sols.

  • PDF

A Summary of Recent Pilot Machine and Commercial Machine Trials Comparing a New Microparticle Retention System with Existing Microparticle Technologies

  • Johnson, Gray;Gerli, Alessandra
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.86-92
    • /
    • 2002
  • The benefits of high performance retention systems have been long recognized by the paper maker. The inter-relation between chemical retention and drainage and their effect on paper production efficiency and paper quality is significant. The subject of this paper is a summary of recent studies comparing three microparticle programs made under highly controlled pilot and commercial paper machine conditions. The results presented in this paper suggest that, in addition to improvements in machine operation, the retention, drainage and formation program can have a marked influence on the paper quality. Improvement of the topographical characteristics of the base paper was observed when the microparticle was a colloidal borosilicate inorganic oxide.

An Overview of Coal Mine Drainage Treatment (석탄광의 광산배수처리기술 현황 및 전망)

  • 정영욱
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This study was undertaken to summarize of the efficiencies of the passive treatment system and suggest future studies for the solution of mine drainage problem. Flow rates of mine drainage from the abandoned coal mines are about 80,000 ton/day. Contaminated mine drainages over about 50 ton/day of flow rate were treated by passive treatment facilities such as Successive Alkalinity Producing Systems(SAPS), oxidation pond and oxic wetland. Chemical analysis for 13 passive coal mine treatment facilities showed that SAPS was the core of treatment facilities because the variation of Fe removal rates was relatively smaller than any other processes and re-leaching of Fe was not measured. The performance and life of SAPS depended on decrease in permeability and retention time due to accumulation of sludge. It is inferred that upgrade of design of the passive treatment system and in-situ treatment using underground void will be necessary for the amelioration of the mine drainage with high metal loading rates.

A Study about Introductory Plan of Automatic Wet Pipe Sprinkler System to Hydraulically Designed System (습식 스프링클러설비의 수리계산방식 도입방안에 관한 연구)

  • Park, Bong-Rae;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.69-77
    • /
    • 2007
  • Our country automatic wet pipe sprinkler system of hydraulically designed system has not deviated from the pipe regulation process, therefore we face limitations when using an independent method to hydraulically designed system. Therefore. after reviewing a developed country's methods using the drainage-density concept, we found it necessary for our country to introduce the drainage-density concept. Currently, under the National Fire Safety Codes(NFSC), this does not solve the problem and the limitation of hydraulically designed system because different problems arise depending on where the head was installed. To make improvements, first, such as the developed country, overcome the difference by introducing the drainage-density concept to determine the amount of drainage. Second, by using diverse head caliber and decreasing the limits on the amounts of distribution, we can expect a leveling off of the drainage density. Third, using the increase of hydraulically designed system through the application of the rule to hydraulically designed system, finally, development to performance based fire protection design.