• Title/Summary/Keyword: Drainage facilities

Search Result 245, Processing Time 0.028 seconds

Study on the Treatment, Utilization and Control of the Acid Mine Drainage for Colliery - An on-site test on the Applicability of a Korean-type Prototype for Mine Drainage Purification- (석탄광의 산성갱내배수 처리.이용.제어에 관한 연구 -한국형 특수갱배수 정화장치 시작품 현지적용실험-)

  • 이춘택
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.11-21
    • /
    • 1986
  • Mine drainage from coal mines is mostly acidic, polluted and/or contaminated, even if its quantity has increased substantially during recent days. This causes two kinds of problems arising at mining districts; one is the environmental disruption and the other is insufficient water supply for living, employee's bathing and industrial purposes. In order to mitigate the aforementioned problems, a specific equipment of Korea type for mine drainage purification has been developed and its prototype manufactured, followed by its applicability tests implemented at mine site. The results of the tests indicates that the new equipment developed is much lower than and economical compared to, other existing neutralization facilities at home and abroad in capital investment at installation stage, the consumption of neutralizing chemicals at operation stage and the requirements of installation site. Whangji area where the prototype water treatment equipment is installed has been sustaining a short supply of usable water, especially in dry seasons and supplementing about 40㎥ of water brought from a location farther than 4km in distance to meet water requirements. The prototype water treatment equipment is however considered capable of providing compressor cooling water in sufficient amount from winter season In the future.

  • PDF

Multi regression analysis of water quality characteristics in lowland paddy fields

  • Kato, Tasuku
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.36-36
    • /
    • 2012
  • Drainage water in lowland paddy fields is quantitatively influenced recycle and/or repeated irrigation by irrigation facilities, i.e. pumps, check gates, small reservoirs and so on. In those drainage channels, nutrients accumulation and increasing organic matters are considered to be occurred, and water quality would be degraded not only environmental aspect but irrigation purpose. In general, Total Nitrogen (T-N) is interested water quality index in irrigation water, because high nitrogen concentration sometimes caused decreasing rice production by excess growth and fallen or degrading quality of taste, then, farmers would like to clear water less than 1mg/L of T-N concentration. In drainage channel, it is known that the nitrogen concentration change is influenced by physical, chemical and biological properties, i.e, stream or river bed condition, water temperature, other water quality index, and plant cover condition. In this study, discharge data (velocity and level) in a drainage channel was monitored by an Acoustic Doppler system and water quality was sampled at same time in 2011. So those data was analyzed by multi regression model to realize hydrological and environmental factors to influence with nitrogen concentration. The results showed the difference tendency between irrigation and non-irrigation period, and those influenced factors would be considered in water quality model developing in future.

  • PDF

Field Model Test of the Non-power Soil Cleaning System (무동력 토사제거시스템의 현장모형실험)

  • Park, Chan Keun;Lee, Young Hak;Hong, Seok Min;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.

Energy Harvesting System for Underground Facility Sensor (지하시설물용 센서 네트워크를 위한 에너지 획득 장치)

  • Kwon, Young-Min;Lee, Hyung-Su
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea

  • Choi, Jeonghyeon;Lee, Okjeong;Lee, Jeonghoon;Kim, Sangdan
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • To minimize the impact of urbanization, accurate performance evaluation of Low Impact Development (LID) facilities is needed. In Korea, the method designed to evaluate large-scale non-point pollution reduction facilities is being applied to LID facilities. However, it has been pointed out that this method is not suitable for evaluating the performance of relatively small-scale installed LID facilities. In this study, a new design formula was proposed based on the ratio of LID facility area and contributing drainage area, for estimating the Stormwater Interception Ratio (SIR) for LID facilities. The SIR was estimated for bio-retentions, infiltration trenches and vegetative swales, which are typical LID facilities, under various conditions through long-term stormwater simulation using the LID module of EPA SWMM. Based on the results of these numerical experiments, the new SIR formula for each LID facility was derived. The sensitivity of the proposed SIR formula to local rainfall properties and design variables is analysed. In addition, the SIR formula was compared with the existing design formula, the Rainfall Interception Ratio (RIR).

Inundation Analysis of Agricultural Basin Considering Agricultural Drainage Hydrological Plan and Critical Rainfall Duration (농지배수 수문설계 기준과 임계지속기간을 고려한 농업 소유역 침수분석)

  • Kim, Kwihoon;Jun, Sang-Min;Kang, Moon Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • KDS (Korean Design Standard) for agricultural drainage is a planning standard that helps determine the appropriate capacity and type of drainage facilities. The objective of this study was to analyze the inundation of the agricultural basin considering the current design standard and the critical rainfall duration. This study used the rainfall durations of 1-48 hour, and the time distribution method with the Chicago and the modified Huff model. For the runoff model, the NRCS (Natural Resources Conservation Service) unit hydrograph method was applied, and the inundation depth and duration were analyzed using area-elevation data. From the inundation analysis using the modified Huff method with different rainfall durations, 4 hours showed the largest peak discharge, and 11 hours showed the largest inundation depth. From the comparison analysis with the current method (Chicago method with a duration of 48 hours) and the modified Huff method applying critical rainfall duration, the current method showed less peak discharge and lower inundation depth compared to the modified Huff method. From the simulation of changing values of drainage rate, the duration of 11 hours showed larger inundation depth and duration compared to the duration of 4 hours. Accordingly, the modified Huff method with the critical rainfall duration would likely be a safer design than the current method. Also, a process of choosing a design hydrograph considering the inundation depth and duration is needed to apply the critical rainfall duration. This study is expected to be helpful for the theoretical basis of the agricultural drainage design standards.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area

  • Lee, Jung-Sik;Lee, Jae-Joon;Kim, Kyu-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.21-35
    • /
    • 1996
  • This Study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Hypothetical areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer ares is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall freqyencies, land uses, drainage patte군, basin shates and detention storage policies are considered. Folw reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved 노두 the detention storage is planned at the watershed level rather than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2 and Seongnae 1-are selected on the basis of hydrologic response charactaristics. Through the regression analysis between dimensionless deterntion storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage faclities are presented.

  • PDF

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.