• Title/Summary/Keyword: Drainage facilities

Search Result 245, Processing Time 0.049 seconds

LCA Based Environmental Load Estimation Model for Road Drainage Work Using Available Information in the Initial Design Stage (초기 설계단계의 가용정보를 활용한 도로 배수공종의 LCA기반 환경부하량 산정모델)

  • Park, Jin-Young;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and life cycle assessment (LCA) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review at the initial design stage where it is difficult to obtain such information. In this study, a construction quantity computation system based on the standard section was developed for the drainage facilities of the road and utilized in the model to calculate the environmental load. This model can estimate the environmental load by calculating the amount of resources required for LCA using only the information available at the initial design stage. To verify the validity of the model, five validation cases were applied and compared with the unit estimation model and the multiple regression analysis model. As a result, it is confirmed that the mean absolute error rate is 9.94%, which is relatively accurate and effective model in the initial design stage.

The Engineering Services on the Go Cong Water Control Project in Vietnam (월남국 고콩지구 수리 개발 기본 조사)

  • 조용칠
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2471-2478
    • /
    • 1971
  • Go Cong Water Control Project was conducted on its preliminary survey and design by Agricultural development Corporation for the Korean Government, an Executing Agency, and Directorate of Irrigation and Rural Engineering of the Ministry of Land Reform, Agriculture and Fishery Development for the Vietnamese Government, a cooperation Agency, under Korean and Vietnamese Economic and Technical Cooperation Program. The main purposes of the project are aimed at the improvements of irrigation and drainage, and salt water prevention of the Go Cong area located at northern part of the Mekong Delta. All the works from field survey through design to preparing reports were carried out by ADC alone and recently Korean Government submitted the relevant reports to vietnamese Government through official channel. The contents of the project are summarized as following: 1. The project comprises irrigation, drainage and salt water prevention facilities on the benefited area of about 55,000 hectares, covering Go Cong and Dinh Tuong(My Tho) Provinces and it will be possible to cultivate rice cropping twice a year, irrigating all the area in the dry season; 2. With completion of this project, annual production of rough rice and vegetables are anticipated to increase by 222,600 .T. and 142,600 M.T. respectively and the internal rateof return stants at 26 per cent, applying for the exchange rate of US $ 1 to VN $ 275. 3. Total investments required for the project are estimated at US $ 56,394,000 of which actual construction cost is estimated at US $ 39,183,000. The project has planned to be d to be developed by four stages, taking bout 7 years. 4. The project needs for three places of pumping plants. 57Km of feed and main irrigation canals, 81Km of drainage channels, 97Km of dike, 23 places of sluices and navigation locks, etc.

  • PDF

A Study on Reported Status and Management Plan of Marine Facilities in Korea 2. On the Basis of Region and Type of Facilities (국내 해양시설의 신고 현황과 관리 방안에 관한 연구 2. 지역별 및 시설종류별 현황을 중심으로)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.275-285
    • /
    • 2010
  • Present state of nationwide marine facilities reported to 12 regional maritime affairs and port offices of MLTM in Korea for two years 2008 and 2009 was analyzed based on region and type of facilities, and national management plan was proposed in this study. As of the end of 2009, 8 types of marine facilities were reported to Yeosu regional maritime affairs and port office, while only 3 types of facilities were reported to Pohang, Daesan and Jeju regional offices, respectively. Oil and noxious liquid substances storage facilities belonged in the type of facility which was reported to all of 12 regional offices, and ranged from 11 facilities reported to Pyeongtaek regional office to the respective 38 facilities to Yeosu and Masan regional offices. In pollutants storage facilities, 4 facilities were reported to Masan regional office, 2 facilities to Donghae and Mokpo regional offices, respectively, 1 facility to Yeosu, Gunsan and Pyeongtaek regional offices, respectively, and none of facilities to the other regional offices. Ship construction, repair and scrap facilities belonged in the type of facility which was reported to all of 12 regional offices, and 45% of the facilities were concentrated in Southeastern Sea of Korea centering around Busan and Masan. In cargo handling facilities, 3 facilities were reported to Busan and Masan regional offices, respectively, 1 facility to Daesan regional office, and none of facilities to the other regional offices. In wastes storage facilities, 5 facilities were reported to Ulsan regional office, 4 facilities to Gunsan regional office, 2 facilities to Incheon regional office, 1 facility to Yeosu regional office, and none of facilities to the other regional offices. 65% of nationwide water intake and drainage facilities were concentrated in the areas of Pohang and Mokpo, and 78% of nationwide fishing spots at play were concentrated in the area of Masan. In other marine facilities, 4 facilities were reported to Donghae regional office, 3 facilities to Masan regional office, 2 facilities to Yeosu and Pyeongtaek regional offices, respectively, 1 facility to Incheon and Ulsan regional offices, respectively, and none of facilities to the other regional offices. In integrated marine science base facilities, 3 facilities were reported to Jeju regional office, 1 facility to Yeosu, Ulsan and Gunsan regional offices, respectively, and none of facilities to the other regional offices. The management based on the circumstances of regional offices, the management based on the characteristics of the type of facilities, the amendment of the relevant rules and regulations, facility owner's full knowledge and observance of the relevant rules and regulations with regard to the relevant type of facilities, and positive management actions from national point of view were proposed for national management plans of marine facilities.

Development of Work Breakdown Structure and Analysis of Precedence Relations by Activity in School Facilities Construction Work (학교시설 건설공사의 작업분류체계 구축 및 단위작업별 선후행 관계 분석)

  • Bang, Jong-Dae;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.189-200
    • /
    • 2017
  • The work breakdown structure and the precedence relations by work activity are very important because they are the basic data for estimating the construction duration in the construction work. However, there is no standard to accurately estimate the construction duration since the size of the school facilities construction is smaller than the general construction work. Therefore, some schools are unable to open in March or September and the delay of the construction duration can cause damage to the students. To solve this problem, this study developed a work breakdown structure of school facilities construction work and analyzed the precedence relations by work activities. The work breakdown structure of the school facilities construction is composed of three steps. The operations corresponding to level 1 and level 2 are as follows. (1) 2 preparatory work categories; preparation period and temporary construction. (2) 17 architectural work categories; temporary construction, foundation & pile work, reinforced concrete work, steel roof work, brick work, plaster work, tile work, stone work, waterproof construction, wood work, interior construction, floor work, metal work, roof work, windows construction, glazing work and paint construction. (3) 7 mechanic and fire work categories; outside trunk line work, plumbing work, air-conditioning equipment work, machine room work, city gas plumbing work, sanitation facilities and inspection & test working. (4) 4 civil work categories; wastewater work, drainage work, pavement work and other work. (5) 1 landscaping work categories; planting work. The work breakdown structure was derived from interviews with experts based on the milestones and detailed statements of existing school facilities. The analysis of precedence relations by school facilities work activity utilized PDM(Precedence Diagramming Method)which does not need a dummy and the relations were applied using FS(Finish to Start), FF(Finish to Finish), SS(Start to Start), SF(Start to Finish). The analysis of this study shows that if one work activity is delayed, the entire construction duration may be delayed because the majority of the works are FS relations. Therefore, it is necessary to use the Lag at the appropriate time to estimate the standard construction duration of the school facility construction. Lag is a term used only in the PDM method and it is used to define the relationship between the predecessor and the successor in creating the network milestone. And it means the delay time applied to the two work activities. The results of this study can reasonably estimate the standard construction duration of school facilities and it will contribute to the quality of the school facilities construction.

The Method for Transforming the Shape File in ESRI into the Oracle Spatial DB for the Spatial DB Construction of the Drainage System (하수관거 공간DB 구축을 위한 ESRI 공간 파일의 오라클 공간DB 자동 변환 기법)

  • Kim, Ki-Uk;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.989-996
    • /
    • 2009
  • Recently, use of the GIS (Geographic Information System) for the disaster of the urban inundation is increasing. The digital disaster map is the system which analyzes the occurrence area of inundation in the past and forecasts the flood areas by the hydrology method. The development of the system which simulates the flood forecast area by the SWMM(Storm Water Management System) and hydrology method and displays the danger areas is required for the construction of the inundation forecast system. And the spatial database which contains information of the urban facilities such as the street and building and the sewer system such as the manhole and drainage and the result of the hydrology analysis is constructed. In this paper, we propose the method for transforming the Shape File in ESRI into the Oracle spatial database to construct the spatial data for the drainage systems and urban facilities using the Shape File format in the ESRI. We suggest the algorithm for the transformation of the data format, and develop the prototype system to display the inundation area using the spatial database.

  • PDF

A study on the variation of design flood due to climate change in the ungauged urban catchment (기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구)

  • Hwang, Jeongyoon;Ahn, Jeonghwan;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

A Study on the Evaluation and Characteristics of Architectural Facility-equipment Noise in Building (건축 설비기기 소음의 특성 및 평가에 관한 연구)

  • Byun, Woon-Seob;Choi, Dool;Kim, Jae-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.537-544
    • /
    • 2009
  • On account of the technological development, intelligent building is on increasing where the artificial regulation on indoor environment is possible, thence the concern about those facilities such as water-supply facility, water-heater and drainage facility has becomes higher. However, due to diversification and complicated system of the facility-equipments, the noise generating from such facility equipment is gradually becoming a problem, and since especially equipment noises arising at the machine room frequently infringe into the resident's pleasant living environment with the complex types of an air-borne sound and a structure-borne sound, it is becoming the civil complaint. On such viewpoint, this Study ever observed the characteristics of noise generating from various facility-equipments in the building, and intended to evaluate the facility-noises by use of the valuation index such as PSIL, N, NC, NR. As result of, the facilities noise which happens in the machine room makes normal conversation very difficult due to high sound pressure level. Based on such data, this study is willing to present it as an essential material for establishment an efficient measure against the facility-noises arising at machine room hereafter.