• Title/Summary/Keyword: Drainage density

Search Result 194, Processing Time 0.027 seconds

Application of storm water management model to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan

  • Liu, Jian;Liu, Yan;Liu, Ru;Li, Sixin;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.346-352
    • /
    • 2017
  • This study discusses application of the storm water management model (SWMM) to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan in October 2019. The SWMM was used to simulate the runoff processes and reduction efficiencies of the sponge city facilities. The runoffs of the sponge city facilities were compared with those of traditional drainage system for the design rainfall of 35.2mm and the rainfalls with different recurrence periods. The results show that the hign density sponge city facilities could meet the requirements for 80% of annual runoff control rate, SWMM can determine the scales of the sponge city facilities and effectively simulate the hydrological processes for different layout schemes. The simulation model is also helpful to making optimization of the sponge city facility layout.

  • PDF

PREPERATION OF AMPHOTERIC STARCHS AND STUDY ON WET END CHEMISTRY IN PAPERMAKING

  • Shan, Chen-Fu;Su, Xie-Lai;Yi, Wang-Hai;Quan, Long-Yan
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.386-389
    • /
    • 1999
  • Amphoteric polymers have brought to papermakers' attention gradually. In this paper, a series of amphoteric starches with different cationic and anionic degree of substitution (DS) are prepared. Better product has been selected and used under different condition. As retention and drainage aids, amphoteric starches were used in shorter fiber length, weak strength and poor drainage bleached AQ-Soda wheat straw pulp. In neutral and alkaline papermaking system, when amphoteric starches contain 0.024-0.026 anionic degree of substitution (DS), it is shown that the higher the cationic degree of substitution (DS) in amphoteric starches, the better the filler retention. The filler retention is improved 12.5%, 30.3%, and 35.1% and 32.5% respectively by adding 1% amphoteric starch LS-L2 -1 (0.034), LS-L2-2 (0.040), LS-L2-3 (0.047) and LS-L2-4 (0.052). But the strength of handsheets if affected a little. By adding 2% Al2 (SO4)3 and 1.5% LS-L2-3 at pH 7.5, filler retention can be improved from 38% to 80%, and breaking length of sheet only decreases 3.2%. As dry strengthening aids, amphoteric starches were used in eucalyptus APMP. Amphoteric starches are used in eucalyptus APMP. The amphoteric starch LS-L2-2 is better dry strength aid. Adding 1% LS-L2-2 can improve breaking length 24.5%, burst index 42.9%, tear index 38.8%, folding endurance and density of the handsheets.

Regression Analysis Between Specific Sediments of Reservoirs and Physiographic Factors of Watersheds (유역의 지상적 요인과 저수지 비퇴사량과의 관계분석)

  • 서승덕;박흥익;천만복;윤경덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.45-61
    • /
    • 1988
  • The purpose of this study is to develop regression equations between annual specific sedi- ment of reservoirs and physiographic factors of watersheds. 122 irrigation reservoirs, which have irrigation areas equal to or larger than 200 ha, located in Korea except Cheju province are used in the analysis. Simple regression analyses between the specific annual sediment and each of the physical characteristic factors of the reservoirs are carried out at first. Then, multiple regression analyses between the annual specific sediment and the physical characteristic factors with high correlation coefficients in the simple regression analyses are made. The results obtained from this study are as follows : 1. The results of the sirnple regression analyses show that in each province the watershed area, the length of mainstream, the circumferential length of watershed have high cor- relation coefficients (R=0.814-0.986), and that drainage density, reservoir capacity per watershed area, drainage frequency, basin relief have low correlation coefficients (R=0. 387-0.955). 2. The purposed multiple regression equations between the annual specific sediment of reservoirs and three major characteritic factors of watersheds, namely, the watershed area, the circumferential length of watershed, and the length of mainstream, are proposed as given in Table 2. 3. The result of the simple regression analyses with respect to the reservoir elevation except Jeonnam province, which has very different characteristics comparing to other provinces, shows that watershed area, main stream length and circumferential length have high correlation coefficients (R=0.806-0.884) in low-elevation reservoirs and intermediate- elevation reservoirs, but low correlation coefficients (R=0.639-0.739) in high-elevation reservoirs. 4. With respect to the reservoir elevation, the proposed multiple regression equations bet- ween the annual specific sediment of reservoirs and the three major characteristic factors of watershed which have high correlation coefficients are proposed as given in Table 5.

  • PDF

Evaluation of the Effect of the Discharged Water from Bong Stream after Rainfall Events on the Bacteriological Water Quality in Gangjinman, Korea (강우 발생에 따른 남해군 봉천 방출수가 강진만 해역의 세균학적 수질에 미치는 영향 평가)

  • Park, Kun-Ba-Wui;Jo, Mi-Ra;Lee, Hee-Jung;Kwon, Ji-Young;Son, Kwang-Tae;Lee, Tae-Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.622-629
    • /
    • 2011
  • We investigated the effect of the discharged water from Bong Stream, which is located in the drainage area of Gangjinman area on the bacteriological water quality in the coastal area after rainfall events. Following 12.5 mm of rainfall, water discharged from Bong Stream had a very limited effect on bacteriological water quality in adjacent area and the affected area did not extend to the designated area. On the other hand, after 23 mm rainfall, the density of fecal coliform at stations located in the designated area was higher than at stations located in the adjacent area. The degree of bacteriological contamination at the surveyed stations in the coastal area after rainfall events did not show a relationship with distance from the shoreline. These results indicate that the direction of spread and the range of contaminants from the drainage area were affected by tides at the time of the survey. Therefore, a detailed survey of the effects of tides on the diffusion characteristics of the contaminants from Bong Stream is needed to establish a proper management plan for the surveyed area.

The Analysis of Landscape Ecological Effect of Forest by Trail-Building (등산로 개설에 의한 산림의 경관생태학적 영향 분석)

  • Lee, Woo-Sung;Park, Kyung-Hun;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.128-137
    • /
    • 2008
  • The purpose of this study is to analyze the effect of hiking trails on forest landscape's fragmentation, based on which also to assess the landscape-ecology-based integrity by small drainage area by selecting Bukhansan National Park as a survey target. The results of effect analysis are as follow; size of forest patch decreased; the density of patch and edge increased; patch shape became complicated; the dimensions of core area noticeably decreased and proximity degree between patch increased after trail-building. In addotion, the assessment results of overall landscape ecology-based integrity by small drainage basin showed that the Bukhansan catchment area was highest making 3.7 point, while Gugi catchment area was rated the lowest making 1.6 point. Putting the above results together, it is necessary to prohibit the opening up of unnecessary trails and to make room for ecological restoration of damaged and disturbance area to their original state as nature goes for landscape-ecology-based conservation and management of forests.

A Study on the Landscape Planning Evaluation on Apartment Artificial Ground (아파트 단지 인공지반의 계획적 평가에 관한 연구)

  • 김유일;오정학;김인혜;윤홍범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.297-311
    • /
    • 1998
  • Landscaping on artificial ground is currently served as a means to imposing a greenery benefit on high-density and high-rise apartment sites. It functions as a sub-hierarchy in apartment planning such as ornamental element from the past. Major parking space tends to be allocated on the basement area in response to the required parking regulation. Therefore, competitive relatioinship between the parking and greenery space I limited outdoor of apartments leads to the development planning strategy and technology of artificial ground. This study aims at evaluating landscape planning on artificial ground of apartment complex through several approaches such as site survey, plan drawing analysis, and interview with related field experts. 15 survey apartment sites including Bundang Model, Shindaebang-dong, Pyoungchon Hyundai Apartments have been selected for conducting the research. Main results of this study are summarized below : First, scattering allocation of artificial ground between apartment building units is a dominant plan layout type among the survey sites. Even though unifying allocation type has an advantage to maximize underground parking space, it has a difficulty in maintaining proper soil ground base for nurturing plants. Therefore, underground parking space should be planned by unifying allocation type placed separately from apartment units. This plan type can provide a balanced planting between soil and artificial ground on surface level. Second, It is strongly recommended to integrate the whole planting base which involves architectural structure, drainage, and water proofing above the planting design. When considering that process as a professional subject dealing with natural material such as trees and shrubs, those tasks should be directed by landscape architectural divison and landscape architect. And planting area for artificial ground has to be specified in initial phase of architectural design. This step provides an opportunity to make a proper decision on structural load, drainage, and water proof design as an integrated part of the management.

  • PDF

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Comparison of Irrigation and Drainage Volumes, Growth and Fruit Yield under Different Automated Irrigation Methods in Tomato Rockwool Hydroponics (토마토 암면 고형배지경에서 급액방식에 따른 급배액량, 생육 및 과실 수량 비교)

  • Yoon, Bumhee;Cho, Eunkyung;Baek, Jeonghyeon;Cho, Ilhwan;Woo, Younghoe;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This study is to compare irrigation efficiency between sap flow sensor automated system (SF) and conventional irrigation system based on integrated solar radiation automated system (ISR) in tomato rockwool hydroponics. Total irrigated volumes was higher in the ISR system by 5.0L per plant, a lower drainage rate was found in the SF system, compared to the ISR system. There was no difference in shoot and fruit fresh weights, water use efficiency (WUE) and water amount consumed for producing 200g of tomato fruit. The daily average sap flow density (SFD) was closer to the change of solar irradiance (SI) in the plant grown under the SF system, compared to the ISR system. The correlation coefficient (r2) between the fruit diameter and the volumetric water content during the 56 and 82 days after transplant showed the SF treatment was higher than the ISR at night and daytime, and the correlation was higher at night time. The sap flow density and humidity deficit (HD) of SF treatment was related as closely as the solar irradiance. Further studies should demonstrate that SF irrigation system is a convenient method for hydroponic farmers with advantages, such as growth, higher yield, WUE, and accuracy.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Galvanic Anode Charactristics of Grounding Cell Design for Corrosion Protection of Pipings (배관 방식용 접지전지 설계를 위한 유전양극의 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1983
  • The galvanic anodes have three kinds of Zn alloy anode, Al alloy anode and Mg alloy anode, which are widely used in cathodic protection for all metal structures in water or under ground. This paper to be used for designing of the grounding cell has reached the following conclusion as the results of an experimental study on the characteristics of such galvanic anodes for corrosion protection of pipings: 1) Zn alloy anode was the best when the specific resistance of the environment was bellow 1000 $\Omega$.cm, and when above 1000 $\Omega$.cm, Mg alloy anode to be used for designing of the grounding cell was the best. 2) Al alloy anode was better than Mg alloy anode for grounding cell when the specific resistance was bellow 500 $\Omega$.cm, but the Al alloy anode in all the environments reduced the characteristics of galvanic anode to the lower grade than those of Zn alloy anode. 3) Each impressed voltage (E) of the anodes at which drainage current density ($\rho$) begins rapidly increasing is quantitatively presented as follows: \circled1 E sub(Zn)=log (4.9465/$\rho$super(0.0639))+11$\times$10 super(-6)$\rho$super(0.8923i) \circled2 E sub(Al)=log (4.9306/$\rho$super(0.0525))+13$\times$10 super(-6)$\rho$super(0.9314i) \circled3 E sub(Mg)= log (3.7086/$\rho$super(0.0988))+181$\times$10 super(-6)$\rho$super(0.5406i) 4) The empirical equations between the drainage current density (i) and impressed environment are modeled as the following type. logi=g+root(n.E+r)(g,n,r; constants)

  • PDF