• 제목/요약/키워드: Drainage Tool

Search Result 77, Processing Time 0.025 seconds

Landform and Drainage Analysis in Geoje-Do Using GIS (GIS를 이용한 거제도 지형 및 하계 분석)

  • Kim, Woo-Kwan;Lim, Yong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.19-35
    • /
    • 1997
  • The purpose of this study is to find out the characteristics of landform in Geoje-Do using GIS and DTED data. The characteristics of landform in Geoje-Do are as follows; First, the height-range of Geoje-Do is $0{\sim}580m$, and the average elevation of it is 124m. Volcanic and granite region is mainly appeared at high elevation-region. But, we can't find out outstanding difference of elevation, according to its geology. The second. the slope-range of Geoje-Do is $0{\sim}52$ degree, and the average slope of it is 17.6 degree. The slope of volcanic and granite area is more steeper than any other region. But the results of analysis of the geology in Geojo-Do, don't show outstanding difference of the slope. The third, the area-rate of the aspect of Geoje-Do is almost same in all direction. And the area-rate of south-west direction is the highest. According to the geology of Geoje-Do, granite is distributed the most widely, and the area of volcanic and granite occupy 60% of entire island's area. According to analysis of influence of geology with elevation, geology has little relationship with elevation. According to analysis of geology and drainage network, streams are inclined to be developed well in Alluvium area. Drainage network is well developed throughout the entire island, except southeast area. The highest order of stream is 4 in 1:25,000 topographic map. The density of stream in Geoje-Do is very high, such as 1.6. The bifurcation-ratio of stream is also higher than 4 in all order. The length-ratio of stream is ranged from 1.24 to 3.25. According to the relationship between order and elevation. order is the greater, elevation is the lower. According to the relationship between order and slope, order is the greater, slope is the gentler. In this study, we use DTED Data, and compare it with topographic map data. According to the comparison, there is a little difference between DTED data and topographic map data. Therefore, to use DTED data in landform analysis, it is required coordinate matching process. This process is very important, and take very long time. Thus, if you use DTED in landform analysis, some processes are required. DTED data can be taken very easily, but its using is not simple. Because coordinate adjust is very hard work.

  • PDF

Effect of Subsurface Drainage Systems on Soil Salinity at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Oh, Yang-Yeol;Ryu, Jin-Hee;Ko, Jong-Cheol;Hong, Ha-Chul;Kim, Yong-Doo;Kim, Sun-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.618-627
    • /
    • 2015
  • Soil salinity is the most critical factor for crop production at reclaimed tidal saline soil. Subsurface drainage system is recognized as a powerful tool for the process of desalinization in saline soil. The objective of this study was to investigate the effects of subsurface drainage systems on soil salinity and corn development at Saemangeum reclaimed tidal saline soil. The field experiments were carried out between 2012 and 2014 at Saemangeum reclaimed tidal land, Buan, Korea. Subsurface drainage was installed with four treatments: 1) drain spacing of 5 m, 2) drain spacing 10 m, 3) double layer with drain spacing 5 m and 10 m, and 4) the control without any treatment. The levels of water table showed shorter periods above 60 cm levels with the deeper installation of subsurface drainage system. Water soluble cations were significantly greater than exchangeable forms and soluble Na contents, especially in surface layer, were greatly reduced with the installation of subsurface drainage system. Subsurface drainage system improved biomass yield of corn and withering rate. Thus, the biomass yield of corn was improved and the shoot growth was more affected by salinity than was the root growth. The efficiency of double layer was not significant compared with the drain spacing of 5 m. The economic return to growers at reclaimed tidal saline soil was the greatest by the subsurface drainage system with 5 m drain spacing. Our results demonstrated that the installation of subsurface drainage system with drain space of 5 m spacing would be a best management practice to control soil salinity and corn development at Saemangeum reclaimed tidal saline soil.

The Development of GIS-based Package Tool for Small Hydropower Resources Analysis (GIS기반 소수력자원 분석용 Package Tool 개발)

  • Park, Wan-Soon;Lee, Chul-Hyung;Heo, June-Ho;Jeong, Sang-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.668-671
    • /
    • 2009
  • This study seeks to develop a map of the domestic small hydropower(SHP) resources to further improve SHP resources, developed through package tool which can accurately evaluate a wide range of SHP basin in a short period of time. GIS-based package tool for SHP resources analysis was calculated using 840 standard basin classified by drainage area and facility capacity, etc., and to assume a 40% annual load factor, expected annual electricity production was calculated. SHP resources potential for the development of SHP will be utilized as basic data.

  • PDF

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Road Cut Slopes (건설현장 절취사면의 산성배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.491-498
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur minerals pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this study the generation characteristics and the prediction of ARD of various road cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Sixteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

  • PDF

Assessing the Land Potential Utilization Status of Watershed Area

  • Malini, Ponnusarny;Park, Ki-Youn;Lee, Hye-Suk;Yoo, Hwan-Hee
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.151-152
    • /
    • 2008
  • The planning and management of the watershed environment require huge amount of information regarding almost all aspects of natural and manmade features of the area. Until lately this study could be achieved through days of exhaustive surveys map generation and tedious calculations. Remote sensing and GIS provides huge temporal database for an area and GIS provides the powerful tool for spatial and non-spatial analysis of remotely sensed data. The paper highlights the assessment of land potentiality using weighed overlay analysis with drainage density, soil, slope and lineament, LULC map was used to identify the utilization area of the watershed. The arithmetic overlay analysis was performed with potential and utilization layer to assess the availability of land for the future development.

  • PDF

Surgical Experiences of Boerhaave`s Syndrome -10 Cases analysis- (Boerhaave syndrome의 외과적 치험)

  • 최병철
    • Journal of Chest Surgery
    • /
    • v.23 no.5
    • /
    • pp.1035-1039
    • /
    • 1990
  • All 10 cases of spontaneous rupture of esophagus had violent vomiting as precursor. 9 patients were male, 1 case was female. Chief complaints were chest pain and dyspnea. Chest P \ulcornerA and esophagogram were mainly used as confirm diagnostic tool. Perforation sites of all cases were at distal esophagus near the G-E junction. 6 cases were received primary repair within 24 hrs, other cases were managed with surgical drainage after exclusion and diversion of esophagus. Empyema was the most frequent complication. Other complications were sepsis, pneumonia, leaking etc. Overall mortality rate was about 70.0%.

  • PDF

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Assessing the impact of urbanization on runoff and non-point source pollution using the GIS L-THIA (GIS L-THIA를 이용한 도시화에 따른 유출과 비점원오염 영향 평가)

  • Yun, La-Young;Kim, Dong-Hui;Gwon, Hyeok-Hyeon;Sin, Seung-Cheol;Son, Kwang-Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1802-1806
    • /
    • 2006
  • It is important to consider the effects of land-use changes on surface runoff, stream flow, and groundwater recharge. Expansion of urban areas significantly impacts the environment in terms of ground water recharge, water pollution, and storm water drainage. Increase of impervious area due to urbanization leads to an increase in surface runoff volume, contributes to downstream flooding and a net loss in groundwater recharge. Assessment of the hydrologic impacts or urban land-use change traditionally includes models that evaluate how land use change alters peak runoff rates, and these results are then used in the design of drainage systems. Such methods however do not address the long-term hydrologic impacts of urban land use change and often do not consider how pollutants that wash off from different land uses affect water quality. L-THIA (Long-Term Hydrologic Impact Assessment) is an analysis tool that provides site-specific estimates of changes in runoff, recharge and non point source pollution resulting from past or proposed land-use changes. It gives long-term average annual runoff for a land use configuration, based on climate data for that area. In this study, the environmental and hydrological impact from the urbanized basin had been examined with GIS L-THIA in Korea.

  • PDF

Nonstationary Intensity-Duration-Frequency Curves under Climate Change (기후변화를 고려한 비정상성 I-D-F 곡선 작성)

  • Jeung, Se Jin;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.94-94
    • /
    • 2015
  • 기후변화와 변동으로 인한 기상이변이 갈수록 심각해지고 발생 빈도도 잦아짐에 따라 현재의 배수관련 사회기반시설(Drainage Infrastructure)이 이런 문제에 대처할 준비가 잘되어 있는지에 대해 의문점이 제기되고 있다. 현재의 배수관련 사회기반시설의 설계는 이른바 정상성(stationarity)이라는 가정 하에 강우의 강도(Intensity), 지속기간(Duration), 빈도(Frequency)의 관계를 나타내는 I-D-F 곡선을 주로 이용하기 때문에 기후변화로 인한 극치사상(extremes)의 유의한 변화를 나타낼 수가 없다는 한계점을 가지고 있다. 그러나 기후변화는 극한기후(climatic extremes)의 특성을 비정상성(nonstationarity)이라 일컫는 개념으로 바꾸고 있기 때문에 배수관련 기반구조 설계(Drainage Infrastructuredesign)의 기본 가정의 하나인 강우 통계 매개변수의 정상성은 기후변화의 시대에는 더는 유효하지 않을 수 있다. 본 논문에서는 이러한 비정상성을 고려하여 조건부 GEV 분포를 이용하여 지속시간별 확률강우량 과비정상성 I-D-F 곡선식을 유도하였다. 또한, 분포형 홍수유출모형인 S-RAT(Spatial Runoff Assessment Tool)을 이용하여 강우강도의 증가가 설계 최대유량(design peak flows)에 미치는 영향을 분석하였다. 분석결과 지속기간별 차이는 있었지만 고빈도로 갈수록 전반적으로 현행 I-D-F 곡선이 실질적으로 극한강수를 과소평가하고 있으며 정상성 I-D-F 곡선 작성 방법이 기후변화의 배수관련 기반구조물의 능력설계에 적합지 않을 수도 있음을 제시하였다.

  • PDF

Drainage Network Analysis System for Estuarine Urban Areas (하구부 도시유역 배수위 해석 시스템)

  • Ahn, Byung-Chan;Ahn, Sang-Dae;Kim, Won-Il;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.129-135
    • /
    • 2008
  • USWMM was developed as a drainage analysis system for estuarine urban areas by adding sluice gates on existing EPA SWMM5 through this study. For the purpose of reviewing, Ansungchon river was modeled with USWMM and calibration and verification were attempted at three observation stations. In comparison, another approach using HEC-HMS and HEC-RAS was applied to the area under the same condition. It turned out that USWMM resulting values were closer to the observed values than those of the HEC-HMS and HEC-RAS approach. USWMM's flow simulation through sluices were more realistic to sluice operation fields by adding incomplete submerged orifice flow equation and maintenance water level. In sum, USWMM can be seen as a general purpose tool for estuarine urban drainage analysis system.