• Title/Summary/Keyword: Drainage System

Search Result 1,041, Processing Time 0.09 seconds

New Test Methods of Retention and Drainage Using Multi-channel Turbidimeter and Balance Recorder

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.31-37
    • /
    • 2006
  • This study was performed to find effective measuring methods of retention and drainage by comparing traditional measuring methods of Britt jar, Canadian standard freeness tester methods and recently developed RDA-HSF with multi-channel turbidimeter method. At the result, Multi-channel turbidimeter method was useful to measure retention and efficiency of multiple chemical dosing system. A system CSF equipped with the balance recorder was also useful to obtain dynamic drainage information including initial drainage rate and final drainage amount. Therefore, we consider these new measuring systems would be helpful to advance retention and drainage technology.

Drainage and Shear Stability of Microparticle Retention Systems Based on Cationic Guar Gums and Colloidal Silicas (양이온성 구아검과 콜로이달 실리카를 이용한 마이크로파티클 보류시스템의 탈수 및 전단안정성)

  • Ham, Choong-Hyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • The trend of using more hardwood and recycled fibers, and closing more tightly of the paper mill white water system has resulted in build-up of fines as well as organic and inorganic contaminants in the white water. This changes in papermaking wet end requires developing chemical additive system that provides good fiber retention and drainage in closed white water system. In this study the effect of charge densities and chemical characteristics of microparticle systems consisted of cationic guar gums and anionic colloidal silica sols on drainage and retention have been examined. Results showed that higher charge density of cationic guar gum and anionic colloidal silica sol gave better retention and drainage. Particularly highly structured silica gave greater retention efficiency.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

New Retention System Using Branched Polymer

  • Son, Dong-Jin;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.251-256
    • /
    • 2006
  • The purpose of this study was to confirm multiple retention system of C-PAM, A-PAM and Inorganic micro particles vs. traditional micro particle system and dual polymer system by measuring retention, drainage and formation using RDA HSF and Techpap 2D -F Sensor The benefits of dual polymer system were easy to use, low chemical consumption and good retention property but defect was worse drainage property than inorganic microparticle systems. On the other hand, Inorganic microparticle system had benefit of good drainage effect but defects were difficult to use, high chemical consumption. Therefore, we tried to find optimal morphology of polyacrylamide and applied to multiple retention system of C-PAM, A-PAM and inorganic microparticles to compensate defects of both of retention systems. As a result, we found the performance of branched C-PAM, branched A-PAM and inorganic micro particle triple system was more appropriate than traditional inorganic mircoparticle systems or dual polymer systems by comparing retention, drainage and formation.

  • PDF

A study on drainage system of the room-and-pillar underground structure considering groundwater conditions (지하수 유출수 조건을 고려한 주방식 지하구조의 배수시스템 연구)

  • Lee, Chulho;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • The room-and-pillar construction method for underground space is adopted from the room-and-pillar mining method which is one of the most popular underground mining method in the world. Drainage system in the room-and-pillar underground construction method can be similar with the concept of single shell in tunnel because additional reinforcement except the TSL (thin spray-on liner) is not applied in the room-and-pillar construction method. That is, to decrease groundwater level and maintain safety in tunnel, the drainage pin hole inside lining (shotcrete) can be used. However, if total amount of outflow in the underground structure is relatively small or groundwater is not detected, such drainage system will not be useful and cause additional construction cost. In this study, outflow of conventional tunnels in South Korea was investigated and the criteria to determine whether the drainage pin hole is effective was suggested. And the guided drainage system was suggested when drainage pin hole was not applied in the room-and-pillar construction method.

Comparative analysis of the amount of postoperative drainage after intraoral vertical ramus osteotomy and sagittal split ramus osteotomy

  • Kim, Hyunyoung;Chung, Seung-Won;Jung, Hwi-Dong;Park, Hyung-Sik;Jung, Young-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.4
    • /
    • pp.169-172
    • /
    • 2014
  • Objectives: The purpose of this retrospective study was to compare the amount of postoperative drainage via closed suction drainage system after intraoral vertical ramus osteotomy (IVRO) and sagittal split ramus osteotomy (SSRO). Materials and Methods: We planned a retrospective cohort study of 40 patients selected from a larger group who underwent orthognathic surgery from 2007 to 2013. Mean age (range) was 23.95 (16 to 35) years. Patients who underwent bilateral IVRO or SSRO were categorized into group I or group II, respectively, and each group consisted of 20 patients. Closed suction drainage system was inserted in mandibular osteotomy sites to decrease swelling and dead space, and records of drainage amount were collected. The data were compared and analyzed with independent t-test. Results: The closed suction drainage system was removed at 32 hours postoperatively, and the amount of drainage was recorded every 8 hours. In group I, the mean amount of drainage was 79.42 mL in total, with 31.20 mL, 19.90 mL, 13.90 mL, 9.47 mL, and 4.95 mL measured at 0, 8, 16, 24, and 32 hours postoperatively, respectively. In group II, the mean total amount of drainage was 90.11 mL, with 30.25 mL, 25.75 mL, 19.70 mL, 8.50 mL, and 5.91 mL measured at 0, 8, 16, 24, and 32 hours postoperatively, respectively. Total amount of drainage from group I was less than group II, but there was no statistically significant difference between the two groups (P=0.338). There was a significant difference in drainage between group I and group II only at 16 hours postoperatively (P=0.029). Conclusion: IVRO and SSRO have different osteotomy design and different extent of medullary exposure; however, our results reveal that there is no remarkable difference in postoperative drainage of blood and exudate.

Chronic Subdural Hematomas : A Comparative Study of Three Types of Operative Procedures

  • Lee, Joon-Kook;Choi, Jong-Hun;Kim, Chang-Hyun;Lee, Ho-Kook;Moon, Jae-Gon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.210-214
    • /
    • 2009
  • Objective : Several surgical procedures have been reported for the treatment of chronic subdural hematoma (CSDH). We compared the results of treatments for CSDH obtained from one burr-hole craniostomy with closed system drainage with or without irrigation, two burr-hole craniostomy with closed system drainage with irrigation, and small craniotomy with irrigation and closed-system drainage. Methods : Eighty-seven patients with CSDH underwent surgery at our institution from January 2004 to December 2008. Our patients were classified into three groups according to the operative procedure; group I, one burr-hole craniostomy with closed system drainage with or without irrigation (n=25), group II, two burr-hole craniostomy with closed system drainage with irrigation (n=32), and group III, small craniotomy with irrigation and closed-system drainage (n=30). Results : Age distribution, male and female ratio, Markwalder's grade on admission and at the time of discharge, size of hematoma before and after surgery, duration of operation, Hounsfield unit of hematoma before and after surgery, duration of hospital treatment, complication rate, and revision rate were categories that we compared between groups. Duration of operation and hospitalization were only two categories which were different. But, when comparing burr hole craniostomy group (group I and group II) with small craniotomy group (group III), duration of post-operative hospital treatment, complication and recurrence rate were statistically lower in small craniotomy group, even though operation time was longer. Conclusion : Such results indicate that small craniotomy with irrigation and closed-system drainage can be considered as one of the treatment options in patients with CSDH.

A case study on the efficiency test of groundwater drainage system for Taejon LNG Pilot Cavern

  • Lee Dae-Hyuck;Lee Chul-Wook;Do Hyo-Lim;Kim Ho-Yeong;Bodin Jean-Luc;Amantini Eric
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.711-715
    • /
    • 2003
  • For Taejon LNG Pilot Cavern being constructed to verify the technical aspects for storing LNG in lined rock cavern, efficiency tests of groundwater drainage system composed of many pumps and boreholes were performed around the cavern before and after the construction of concrete lining. Through evaluation of water balance and monitoring of pressures and flowrates, even if the present drainage system is very good for reducing water entries into the cavern, non-negligible water is still flowing in the floor of the cavern concrete due to heavy rainfall. To improve the drainage efficiency, additional drainage holes and some grouting were planned.

  • PDF