• Title/Summary/Keyword: Drainage Area

Search Result 1,005, Processing Time 0.03 seconds

A Study on Economic Impacts of Drainage Projects (배수개선사업(排水改善事業)의 경제적효과분석(經濟的效果分析))

  • Kim, Jai Hong;Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.371-381
    • /
    • 1983
  • This study is aimed at identifying the economic effects of drainage improvement projects. The total area of poor drainage is equivalent to 170,000ha, 13% of the total area of paddy field in Korea. The development of poor drained paddy is an urgent problem considering the low rate of self-sufficiency of food grain and the limitation of farmer's income increase. Rapid development of Korean economy has brought labor shoriage in rural farming sector. Accordingly farm mechanization is an important agricultural policy to hike labor productivity and to save production costs of rice farming. The expected economic benefits of the drainage improvement project are derived from increasing land productivity, expanding double cropped area and farming the farm mechanization base in paddy fields. The economic and financial rate of return of the project are considered very important decision making criteria for project implementation by resource allocation. Therefore this study covered benefit and cost analysis of the sampled area, the estimated financial rate of returns in $Buy{\check{o}}$ and Jinsung are represented 15% and 51% respectively and the economic rate of returns in both project area are also showing 1% and 26% respectively. The rate of return of the projects has showed an outstanding variance according to the locational and natural characteristics of the project area. As showing the above economic rate of return, $Buy{\check{o}}$ is very low Jinsung is very high. But the financial rate of return of both projects are considered comparatively high. Cosequently, the drainage improvement projects should be promoted from the view point of farm income increase to make narrow the income gap between rural and urban incomes and farm mechanization to solve labor shortage in the rural area.

  • PDF

Utilization of the Outflowing Groundwater Resources in an Underpass Structure

  • Jin, Kyu-Nam;Park, Jae-Hyeon;Lee, Jung-Min;Lee, Sang-Ho
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.117-121
    • /
    • 2013
  • For underpasses in Yeongjong Sky City business district, the guided drainage system, as a buoyancy prevention system has been designed, and is under construction. This paper investigates the safety of the guided drainage system for underpass structures being constructed in Yeongjong Sky City business district. This paper also calculates the amount of outflowing groundwater generated by the guided drainage system, and proposes alternative usages of the water. In order to investigate safety and field applicability of the guided drainage system for underpasses, characteristics of the surface flow for the area of interest have been analyzed, and the flow change of groundwater following the underpass structure construction has been evaluated using the 3-dimensional groundwater program MODFLOW. The influence of ground water on safety of the underpass structures has been calculated by FLAC2D analysis. For alternative usages for the outflowing groundwater generated by the guided drainage system, utilization methods of the outflowing groundwater in national and international resources have been researched. The amount of an outflowing groundwater to be generated in the area of interest has been analyzed, and efficient potential usages of this groundwater have been researched. When guided drainage technique is applied, the change in flow of groundwater must be evaluated and considered as safety factor relating to the buoyancy of the structure. As a result, safety factor demonstrated more than 1.2, meaning that the underpass structure is safe. The amount of subsoil drain generated by the guided drainage system was also analyzed. The quality and amount of water satisfied the standards and volume requirements, so as to make it applicable for a number of uses, such as X, Y, and Z, and should prove to be a valuable resource as the circumstances of the neighboring area change over time. These resources can be used as basic data for future urban water circulation studies, as well as generating research of alternative water usages.

Investigations on Inundation Damage in Greenhouse Complex Established at Lowlands on the Geumgang Riverside (금강변 저지대 시설원예단지의 침수피해 실태와 개선방안 조사연구)

  • Nam, Sang-Woon;Kim, Tae-Cheol;Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.47-55
    • /
    • 2010
  • Investigations on the inundation damage and improvement measures were carried out centering around the protected horticultural complex concentrated in lowlands on the side of Geum river, in Nonsan and Buyeo, Chungnam. Most greenhouses were single-span plastic houses in this area, and tomato, strawberry and watermelon were cultivated mainly. 45.8 % of whole farmhouse were experienced in damage by inundation, and a frequency of the damage was average once in 11 years. The most urgent problem at the greenhouse culture in this area was showed in order of drainage improvement, irrigation water resources and energy saving. Consideration items in drainage improvement project for protected horticulture were showed in order of extending drain pumps, extending drain canals, using concrete flume in drain ditch. It needs to consider systematic plans that can restrain new establishment of greenhouses on the lowland paddy field in drainage area. It is difficult to remove greenhouses which are already established or prohibit cultivation. Therefore we should impose minimum duty items so that greenhouse tillers can cope with inundation. And it is thought that managing agency need to minimize farmers damage by improving drainage ability and introducing maintenance pattern that is different from rice cropping.

Groundwater Balance in Urban Area (도시지역의 지하수수지)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1553-1560
    • /
    • 2011
  • The study analyzes groundwater balance with regard to the water recharge and discharge which contain urbanization components in Suyeong-gu, Busan. It also verifies the reliability and accuracy improvement on the analysis of the balance. The result of the study is viewed as preliminary data which are useful to develop, utilize and manage groundwater. The average quantity of groundwater recharge is 6,014.1 $m^3$/day in the research area during the last ten year period(from 1998 to 2007). The outflow from drainage areas to rivers and coasts is 149.3 $m^3$/day, the inflow from rivers and coasts to drainage area is 439.9 $m^3$/day. The use of the water is 4,243.0 $m^3$/day. The outflow caused by subway in line No.2 and No.3 through Suyeong-gu and the one by building an underground electric complex is 1,500.0 $m^3$/day. The leakage of water works is 6514.9 $m^3$/day. The inflow and outflow of sewerage is 5082.2 $m^3$/day from groundwater to sewer. The amount of groundwater recharge, the inflow from rivers and coasts to drainage area, and the leakage of water works belong to the amount of groundwater inflow and the total amount is 12,968.9 $m^3$/day. The amount of outflow from drainage area to rivers and coasts, the use of groundwater, outflow by subway and underground electric complex tunnel and the amount of inflow of the water to sewerage belong to the amount of outflow of groundwater and the sum amount is 13,031.5 $m^3$/day. The gap between the amount of inflow and outflow of groundwater is 62.6 $m^3$/day, which is considered to reflect the trend that the short term drop in the amount of rainfall results in the amount of groundwater recharge and that the amount of outflow from drainage area to rivers and coasts decreases.

Soil Properties and Plant Yield in the Cultivation Area of Ostericum Koreanum Kit. (강활 재배지의 토양 특성과 수량)

  • Hur, Bong-Koo;Kim, Chan-Yong;Son, Seong-Gon;Oh, O-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • This study was carried out to investigate the cultivated soil properties, the growth and yield of Ostericum koreanum Kit. in the Bonghwa area. The results were as follows: In Bonghwa area, soil texture of upland soil were mostly sandy loam and loam. Sloped areas of $7\sim15%$ were plentiful than the other slopes, that of next was $15\sim30%$ slope. Sandy loam and loam soil were mostly 'well' in the drainage class, but loamy coarse sand and loamy sand soil were 'excessively well' drainage class. In the 'moderately well' drainage class, yield of Ostericum koreanum was 289kg/10a, and that of 'poorly' drainage class was low. The yield of loam soil texture was 284kg/10a. Soil organic matter, Potassium and EC were lower in 'poorly' drainage, but the other constituents were not definite tendency by different drainage classes.

Estimation of Upstream Ungauged Watershed Streamflow using Downstream Discharge Data (하류 유량자료를 이용한 상류유역의 미계측 유출량 추정)

  • Jung, Young Hun;Jung, Chung Gil;Jung, Sung Won;Park, Jong Yoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.169-176
    • /
    • 2012
  • This study describes the estimation of upstream ungauged watershed streamflow using downstream discharge data. For downstream Dongchon (DC) and upstream Kumho (KH) water level stations in Kumho river basin ($2,087.9km^2$), three methods of Soil and Water Assessment Tool (SWAT) modeling, drainage-area ratio method and regional regression equation were evaluated. The SWAT was calibrated at DC with the determination coefficient ($R^2$) of 0.70 and validated at KH with $R^2$ of 0.60. The drainage-area ratio method showed $R^2$ of 0.93. For the regional regression, the watershed area, average slope, and stream length were used as variables. Using the derived equation at DC, the KH could estimate the flow with maximum 41.2 % error for the observed streamflow.

Power-law exponents of runoff-drainage area relationships vary with flow occurrence frequency: Observations from Korean rivers

  • Kim, JongChun;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.246-246
    • /
    • 2015
  • Runoff at any given location along a stream can be expressed as a function of its upstream area. The runoff-drainage area relationship can be well expressed as power-law (Brush, 1961) with its exponent, ranging as high as unity (e.g., Stall and Fok, 1968) and as low as 0.5 in natural rivers. Here, we study the runoff-drainage area relationships for Han River and Nakdong River, Korea. We find that the relationships follow power-law and their exponents are highly related with occurrence frequency of flow. To support this, we analyze flow frequency with historical data measured over decades. Findings in this study can broaden our understanding on mechanisms behind the catchment response to runoff.

  • PDF

Effect of Acid Drainage and Countermeasure about Road Cut Slope Environment (도로절개면 환경에 관한 산성배수의 영향과 대책)

  • 김진환;이종현;구호본;박미선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.481-484
    • /
    • 2003
  • Sulfide minerals contacted with air and water in coal seam cause oxidation reactions. This oxidation reactions make low pH of groundwater and surface water(Acid Drainage). The reddish brown precipitate collected from the cut slope of the study area was estimated using the X-Ray Diffractometer(XRD). XRD results show that the cut slope was affected by Acid Drainage. The cut slope exposured to Acid Drainage become weak about chemical weathering and defile the appearance of the road. Drainage facilities are very important in Cut Slope under Acid Drainage influence. Reactions between Coal seam and water cause chemical weathering and environmental problem. Therefore It is important to control the transfer paths of groundwater and surface water and to install water collecting facilities

  • PDF

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.