• Title/Summary/Keyword: Drag test

Search Result 387, Processing Time 0.025 seconds

Experimental Study of the Flat & Twisted Rudder Characteristics Using Rudder Dynamometer in LCT (LCT에서 방향타 동력계를 이용한 평판 및 비틀림 방향타 특성의 실험적 연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Park, Young-Ha;Seol, Han-Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.391-399
    • /
    • 2021
  • In order to investigate force and cavitation characteristics for the flat & twisted rudders in the Large Cavitation Tunnel (LCT), the rudder dynamometer was designed and manufactured. The measuring capacities of lift, drag and moment are ±1000 N, ±2000 N, and ±150 N-m, respectively. The present dynamometer uses the actuator with a harmonic drive to control the rudder angle without backlash. As the target ship is a military ship with twin shaft, each dynamometer was installed above the port & starboard rudders. After the installation of the model ship with all appendages, the model test composed of rudder force measurement and cavitation observation was conducted for the existing flat rudder & the designed twisted rudder. While the flat rudder showed the big difference of lift & moment between port & starboard, the twisted rudder presented a similar trend. The cavitation of the twisted rudder showed better characteristics than that of the flat rudder. Another set of model tests were conducted to investigate rudder performance by the change of the design propeller. There was little difference in rudder performance for the design propellers with slight geometric change. Through the model test, the characteristics of the flat & twisted rudders were grasped. On the basis of the present study, it is thought that the rudder with better performance would be developed.

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft (회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구)

  • Jang, Min-Uk;Lee, Yoon-Woo;Seo, Young-Jin;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.459-467
    • /
    • 2019
  • The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Computational Fluid Analysis for the Otter Boards - 3 . Efficiency Analysis of the Single Cambered Otter Boards for the Various Slot Position - (전개판에 대한 수직해법 - 3 . 슬롯에 따른 단순만곡형전개판의 성능분석 -)

  • 고관서
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.278-285
    • /
    • 1991
  • The authors propose to use the slot system in order to improve of the efficiency for the cambered otter boards. The experiment is divided into 2 parts, one is the efficiency model test, and the other is the visualization model test. The hydrodynamic characteristics of the model otter boards were tested by efficiency model test to measure the shearing, drag force of the models and visualization test using hydrogen bubble method to observe the streak-line and time-line of flow around the models, and milk spout method to observe the separation zone in the wake behind the models. This study tested for 5 models such ad without slot, slot position 0.2C, 0.4C, 0.6C and 0.8C. The results obtained are as follows: \circled1 The maximum C sub(L) of model otter board with slot position 0.6C in attack angle 27$^{\circ}$ was the highest of all models, it's value was 1.59. \circled2 In general, the L/D ratio of the one slot otter boards were 16~28% higher than otter board without slot. \circled3 The slot position 0.6C was better than any other slot position, and it's conformed by visiualization. \circled4 As to the model otter board with slot position 0.6C, flow speed of the back side was faster 1.3 to 1.7 times than in the front side. \circled5 The size of the separated zone in case of the model otter board with 0.6C was smaller than that of any other models.

  • PDF

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

The development of wed-based remote card sorting tool for information architecture design (인포메이션 아키텍처 설계를 위한 웹 기반 원격 카드소팅 도구의 개발)

  • 정상훈;오기태;이건표;서종환
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.221-230
    • /
    • 2004
  • Existing usability testing method, particularly lab-based usability testing, has been widely implemented for development of user interface. However, the method has critical disadvantages such as high cost, time and effort, unnatural testing environment, and lack of user's direct participation in information architecture. With these backgrounds, this paper aims to develop the web-based participatory tool with particular focus on card sorting. Our tool was developed for allowing user to participate in card sorting with his own computer through web. All the data generated while user is participating in the test are automatically sent to the server, which makes it very easy to collect card sorting data. Users can drag cards of interface elements directly and build the interface structure in their own from their computer-screen so that they can represent their mental models on interface structure of testing website. These functions of our tool can help designers to implement card sorting without tedious and time consuming procedures and improve the method of usability testing by reinforcing user's active participation in building an information architecture.

  • PDF