• 제목/요약/키워드: Drag force coefficient

검색결과 156건 처리시간 0.024초

초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

풍동실험을 통한 배과원 방충망의 풍하중 및 항력계수 평가 (Evaluation of Wind Load and Drag Coefficient of Insect Net in a Pear Orchard using Wind Tunnel Test)

  • 송호성;유석철;김유용;임성윤
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.75-83
    • /
    • 2019
  • Fruit bagging is a traditional way to produce high-quality fruit and to prevent damage from insects and diseases. Growing pears by non-bagging is concerned about the damage from insect, it can be controlled by installing a insect net facility. Wind load should be considered to design the insect net facility because it has the risk of collapse due to the strong wind. So we carried out wind tunnel test for measurement of drag force, where the insect net with porosity about 65% is selected as an experimental subject. As a result of the test, drag force was measured to be 244.14 N when insect net area and wind speed are $1m^2$ and 22.7 m/s respectively. And, drag coefficients for the insect net were found to be about 0.55~0.57, which may be used as the preliminary data to design the insect net facilities at the orchard.

국내 도로터널내 차량항력계수 관련 연구 (A Study on Vehicle Drag Coefficients in Domestic Road Tunnels)

  • 이창우;이경복
    • 한국터널지하공간학회 논문집
    • /
    • 제7권4호
    • /
    • pp.313-321
    • /
    • 2005
  • 터널환기력 중 중요한 비중을 차지하고 있는 교통환기력을 추정하는데 있어서 항력계수는 중요한 설계인자이다. 현재 국내 도로터널 환기시스템 설계시 적용하고 있는 항력계수는 국내 차량특성을 고려하지 않은 외국자료의 인용, 폐색율 만에 기초하며 슬립스트리밍효과를 고려하지 않고 있는 문제를 가지고 있다. 본 논문에서는 국내 터널내 교통환기력의 정확한 추정에 목표를 두고 (1) 현재 운행 중인 국내차량 특성을 고려한 전면 투영면적를 추정하고, (2) 도로서비스 수준별 차량배치상황을 CFD분석하여 슬립스트림밍 효과를 분석하여 차량 1대당 저항계수인 $K_{blockage}$와 항력계수를 분석하였다.

  • PDF

벽 근접 효과에 의한 물체의 항력 양력 변화 (EFFECT OF WALL PROXIMITY ON DRAG AND LIFT FORCES ON A CIRCULAR CYLINDER)

  • 박현욱;이창훈;최정일
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.68-74
    • /
    • 2012
  • Near-wall effect on wakes behind particles is one of the important factors in precise tracking of particles in turbulent flows. However, most aerodynamic force models for particles did not fully consider the wall effect. In the present study, we focused on changes of hydrodynamic forces acting on a particle depending on wall proximity. To this end, we developed an immersed boundary method with multi-direct forcing incorporated to a fully implicit decoupling procedure for incompressible flows. We validate the present immersed boundary method through two-dimensional simulations of flow over a circular cylinder. Comprehensive parametric studies on the effect of the wall proximity on the drag and lift forces acting on an immersed circular cylinder in a channel flow are performed in order to investigate general flow patterns behind the circular cylinder for a wide range of Reynolds number (0.01 ${\leq}$ Re ${\leq}$ 200). As the cylinder is closer to the wall, the drag coefficient decreases while the lift coefficient increases with a local maximum. Maximum drag and lift coefficients for different wall proximities decrease with increment of Reynolds number. Normalized drag and lift coefficients by their maximum values show universal correlations between the coefficients and wall proximity in a low Reynolds number regime (Re ${\leq}$ 1).

Low Speed Wind Tunnel Testing to Measure Drag with Velocity Variation on a Cube Body

  • 최광환;고동균
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.96-102
    • /
    • 2008
  • For centuries now, wind tunnels have been a key element in scientific research in a number of fields. Experimenting with racecars, airplanes, weather patterns, birds, and various other areas has been made much easier because of its development. In the racing field, for example, the information gathered from this testing can mean the difference between winning and losing a race. Weather simulations can also provide valuable information regarding building stability and safety. This has become very important when designing buildings today. Valuable information concerning bird flight has also been collected based on wind tunnel testing. Wind tunnels have a variety of important uses in the world today. Wind tunnel that used here is an open loop low speed wind tunnel. The fundamental principles of this tunnel is moving the air using exhaust fan In the rear side, and placing the cube in the external balance system which used to measure the working force. This experiment is using 50mm cube of finished wood. From this experiment we can get Drag Force (FD), The Reynolds Number (Re) and The Coefficient of Brae (CD).

  • PDF

냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향 (Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구 (Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

스마트무인기에 적용한 유동제어 장치 (Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV))

  • 정진덕;홍단비
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.197-206
    • /
    • 2009
  • 스마트 무인기의 공력특성을 향상시키기 위하여 주익에는 와류생성기(vortex generator), 주익의 끝단에는 유동펜스(flow fence)를 적용하였다. 와류생성기는 SUAV의 최대양력계수와 실속각을 지연시키는 효과가 있었지만 높은 항력증가를 초래하여, 결국에는 양항비가 줄어들었다. 이를 개선하기 위하여 L-형태와 높이가 3mm와 5mm인 와류생성기를 적용하였다. 유동펜스는 나셀 틸팅각이 증가함에 따라 나셀에서 발생하는 박리에 의하여 주익성능이 감소하는 현상을 방지하기 위하여 사용하였다. 두 가지 유동제어 장치를 사용함에 따라 스마트 무인기의 공력특성들이 어떻게 변화하였는지를 정리하였다.

  • PDF

한국 근해에 있어서의 중층트로올의 연구 - IV (Study on the Midwater Trawl Available in the Korean Waters - IV)

  • 이병기
    • 수산해양기술연구
    • /
    • 제23권1호
    • /
    • pp.6-10
    • /
    • 1987
  • 한국 근해에서 조업하는 트로올선에 알맞은 중층 트로올어구를 개발하기 위하여 부산수산대학 실습선 부산 404호(160 GT, 750Ps)로서 조업하기에 알맞게 설계된 어구로서 어구의 유체저항을 측정하고, 그것으로부터 어구의 유체저항을 추산할 수 있는 식을 유도하고, 또한 전개판의 전개력계수와 항력계수를 구한 것을 요약하면 대략 다음과 같다. 1. 어구의 전항력 T=2.15 v 상(1.12), 그물의 항력 R 하(N)=1.96 v 상(1.01)으로서 v의 지수는 1에 가까워서 그물이 물을 잘 여과시켜줌을 시사한다. 2. 소산의 저항의 식에 따라 구한 그물의 유체저항의 추산식은 R 하(N)=4.3$\times$d/l$\times$abv 라고 표현할 수 있다. 3. 전개판의 전개력은 그물의 항력의 19~22%이고, 전개력계수는 1.5정도이며, 항력은 그물의 항력의 5~7%이고, 항력계수는 0.42정도이다

  • PDF

수상안전을 위한 Sculling 동작의 전산유체역학적 연구 (A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety)

  • 이효택;김용재
    • 수산해양교육연구
    • /
    • 제24권1호
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.