• Title/Summary/Keyword: Drag effects

Search Result 404, Processing Time 0.027 seconds

Pump and Temperature Effects on Drag Reducing Additives in Turbulent Pipe Flows (난류 관유동에서 마찰저항감소 첨가제에 대한 펌프와 온도의 영향)

  • Park, S.R.;Suh, H.S.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.330-337
    • /
    • 1996
  • The effects of pump and temperature on drag reducing characteristics were investigated with a polymer(PAAM : Polyacrylamide) and three kinds of surfactants(CTAC, STAC, Habon-G) in fully developed turbulent pipe flows with various experimental parameters such as additive concentration(30~500ppm), pipe diameter(4.65mm, 10.85mm), Reynolds number($4{\times}10^4{\sim}10^5$) and working fluid temperature($20{\sim}80^{\circ}C$). The pump effect on PAAM was severe such that the drag reduction rates obtained with pump were decreased upto 30% as compared with those obtained with compressed air in 4.65mm test section. The temperature effect on PAAM was noticeably considerable, that is, the higher temperaute, the less drag reduction rate. On the other hand, no significant pump effect on the surfactants was observed. The drag reducing effectiveness of CTAC was totally lost in the temperature ragne of 60 to $80^{\circ}C$, whereas STAC and Habon-G kept their distinct drag reducing capability at a temperature of $80^{\circ}C$. This study clearly elucidated that for DHC application of drag reducing additives, the pump and temperature effects as well as additive concentration and pipe diameter should be carefully taken into consideration.

  • PDF

Drag Reduction of Pipe Wall For Fluid Flow due to Injected Polymer Solution - II. Local Drag Reduction in Turbulent Flow- (고분자용액에 의한 유체수송관벽의 저항감소 -II. 난류흐름에서 국소저항감소-)

  • 추낙준;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.11-20
    • /
    • 1991
  • Dilute polymer solutions were injected into turbulent pipe flow of a Newtonian fluid. The local drag reduction for injection of polymer solution at the pipe wall was larger than that at centerline. From the above result we may conclude that the polymer additives were found to influence the flow in the neighborhood of the wall. The effects of the injection apparatus on the local drag reduction are small compared to the drag-reducing effects. The extent of drag reduction increased with polymer concentration and injection flow rate, and the maximum drag reduction obtained were 47% for Polyox Coagulant and 35% for Separan AP-273. In respect to polymer degradation, the polyacrylamide showed better shear stability than the polyethyleneoxide and thus the former expected to have a sharper molecular weight distribution.

  • PDF

Effects of cobble shape on coefficient of drag force (항력계수에 미치는 호박돌 형상의 영향)

  • Park, Sang Deog;Yoon, Min Woo;Yoon, Young Ho
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.419-427
    • /
    • 2017
  • In mountainous rivers, the drag force acting on cobbles abundant in the riverbed surface is important in predicting behavior and response of the river. However there is little research for the drag coefficients of cobbles. This paper is to carry out the experiments for drag force of cobble and analyze the relation between the cobble shape and the drag coefficient. The effects of the shape factor on the drag coefficients $C_D$ when the long axis or the short axis of the cobbles are parallel to the direction of flow velocity were analyzed. The coefficient of drag force increased with the nominal diameter Reynolds number $R_{ep}$. The drag coefficients are greater in short axis than long axis. The coefficient of determination of the relation between $C_D$ and $R_{ep}$ is greater in long axis than short axis. This means that the drag forces acting on the irregularly-shaped cobbles depend on the axis. A change of the drag force distribution has brought about the alternative swing of cobbles. For $R_{ep}$ > 12,000, the amplitude of the swing has been increased sharply and especially was greater in short axis than long axis.

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

A study on practical method to estimate drag of super-cavitating underwater vehicles

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.817-832
    • /
    • 2021
  • In this paper, a simple practical method to estimate the drag of Super-Cavitating Underwater Vehicles (SCUV) is proposed that can obtain the drag with only principal dimensions in an initial design stage. SCUV is divided into cavitator, forebody, afterbody, base, and control fin and the drag of each part is estimated. The formulas for the drag coefficient are proposed for the disk and cone type cavitators and wedges used as control fins. The formulas are a function of cavitation number, cone or wedge angle, and Reynolds number. This method can confirm the drag characteristics of SCUV that the drag hump appears according to the coverage of the body by the cavity and the cavitator drag remains only when the entire body is covered by cavity. Applying this method to SCUV of various shapes, it is confirmed that the effects of cavitating and non-cavitating conditions, cavitator and body shape, and speed could be found.

An experimental study on two-phase flow resistances and interfacial drag in packed porous beds

  • Li, Liangxing;Wang, Kailin;Zhang, Shuangbao;Lei, Xianliang
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.842-848
    • /
    • 2018
  • Motivated by reducing the uncertainties in quantification of debris bed coolability, this paper reports an experimental study on two-phase flow resistances and interfacial drag in packed porous beds. The experiments are performed on the DEBECO-LT (DEbris BEd COolability-Low Temperature) test facility which is constructed to investigate the adiabatic single and two phase flow in porous beds. The pressure drops are measured when air-water two phase flow passes through the porous beds packed with different size particles, and the effects of interfacial drag are studied especially. The results show that, for two phase flow through the beds packed with small size particles such as 1.5 mm and 2 mm spheres, the contribution of interfacial drag to the pressure drops is weak and ignorable, while the significant effects are conducted on the pressure drops of the beds with bigger size particles like 3 mm and 6 mm spheres, where the interfacial drag in beds with larger particles will result in a descent-ascent tendency in the pressure drop curves along with the fluid velocity, and the effect of interfacial drag should be considered in the debris coolability analysis models for beds with bigger size particles.

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

Analysis of Flight Trajectory Characteristics of Ballistic Missiles Considering Effects of Drag Forces (항력을 고려한 탄도미사일 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • This paper analyzed flight trajectory characteristics of ballistic missiles considering effects of drag forces. It is difficult to intercept ballistic missiles which fly over atmosphere with supersonic speeds and small radar cross section (RCS). In particular, the velocities in the phases of boost and terminal are changed significantly due to the steep variation of the drag force. Therefore, in order to build up a successful ballistic missile defense systems, the effects of the drag forces should be considered in the analysis of ballistic missile trajectory characteristics. In this point of view, this work analyzed the effects of drag forces and derived the flight trajectory characteristics of Scud B, C and Nodong missiles. Model of the ballistic missile flight trajectory is considered the effects of Coriolis and centrifugal forces, and specifications of the missiles are open sources.

Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface (에어댐의 높이가 차체 표면의 압력변화에 미치는 영향)

  • Park, Jong-Soo;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF