• 제목/요약/키워드: Down-cutting

Search Result 231, Processing Time 0.031 seconds

Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling (엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정)

  • 류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

Cutting force estimation using spindle and feeddrive motor currents in milling processes (밀링공정에서 이송모터와 주축모터의 전류신호를 이용한 절삭력 추정)

  • 김승철;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1407-1410
    • /
    • 1997
  • Advanced sensor design and filtering technology have been studied to obtain information for condition monitoring and diagnostics inmachining processes. To develope and economic monitoring system in end milling processes, indirect and reliable type of cutting force estimators were required. In this paper, an estimation method of cutting forces during end milling processes was studied through the measurement of current signals obtained from spindle and feeddrive motors. Cutting force and torque models were derived from the cutting geometry in down milling processes. Relationships between motor currents and cutting forces were also developed in the form of AC and DC components from the developed force models. The validity of the cutting force estimator was confirmed by the experiments under various cutting conditions.

  • PDF

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill (볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구)

  • Lee Choon Man;Ryu Seung Pyo;Ko Tae Jo;Jung Jong Yun;Chung Won Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner (코너부의 펜슬가공시 볼엔드밀의 공구변형 특성)

  • Wang, Duck-Hyun;Yun, Kyung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Effects of cutter runout on cutting forces during down-endmilling of Inconel718 (Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;이동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass ( Dactylis glomerata L. ) over Cutting Stages I. Seasonal regrowth and anatomy of leaves (오차드그라스 ( Dactylis glomerata L. ) 품종들의 예취에 따른 엽생장과 수량형성 I. 오차드그라스 품종들의 계절별 엽의 재생과 조직형성)

  • 김훈기;이호진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf growth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly thereafter during the rest cutting stages. In cultivars, Potomac was showed hlgher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrowth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly from 15 days after cutting and leaf $we$ was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

A Study on the Improvement of Surface Waviness by Cutting Force Control (밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구)

  • 오준호;정충영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.206-214
    • /
    • 1988
  • To improve the surface waviness in the peripheral milling, the feedrate is controlled so that the cutting force measured in the normal direction to the workpiece is constant. A discrete time first order model between the feedrate and the tool deflection is derived for the control. It has been shown by the analysis that the tool deflection is directly related to the feedrate and largely affects the surface waviness during cutting. The experimental results shown that the surface waviness is drastically improved by the proposed methods.