• Title/Summary/Keyword: Down-cut milling

Search Result 17, Processing Time 0.043 seconds

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

Effects of the Tool Path on the Geometric Characteristics of Milled Surface (가공경로가 밀링가공면의 기하학적 특성에 미치는 영향)

  • Park, Moon-Jin;Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF

Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling (엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정)

  • 류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

A Study on the Optimum Finish Allowance for Machining Accuracy Improvement in the End Milling Processes (엔드밀 가공의 정밀도 향상을 위한 최적정삭여유에 관한 연구)

  • 최종근;김형선;김성초
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.8-15
    • /
    • 2004
  • A significant error in the end milling processes is generated due to using slender tools of which the strengths are not sufficient. In order to obtain the desired machining accuracy, therefore, it is general that at first the rough cut is implemented, then the finish cut is followed. The rough cut eliminates large volume and the finish cut does the remained part. This remaining portion after the rough cut is called as the finish allowance. Larger finish allowances make it hard to get precise dimensions at a following finish cut. Smaller finish allowances are helpful for good dimension, but it sometimes is responsible for inferior surface qualities and over cuts. This study suggests a guidance for the optimum finish allowance for machining accuracy improvement, in which the rough cuts are regulated to remain the desired margins without any over cuts. Some experiments were carried out with various cutting conditions including the change of tool strengths and depth of cuts, and also extended to up millings as well as down millings.

Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation (엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill (볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구)

  • Lee Choon Man;Ryu Seung Pyo;Ko Tae Jo;Jung Jong Yun;Chung Won Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process (엔드밀링 공정의 형상창성기구에 의하여 절삭면적이 측벽 진직도 특성에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1269-1278
    • /
    • 2013
  • The cutting area changes periodically in the end-milling process because of its form generation mechanism. In this study, the effects of the cutting area on end-milled side walls are studied by developing a cutting area model that simulates the area formed by engagement between a workpiece and a cutting edge of the end mill. To do this, the straightness profile of the side wall in the axial direction is investigated. Models for estimating the cutting area and the transition point, where the slope of the straightness profile changes suddenly, are verified from real end-milling experiments under various radial and axial depth of cut conditions. Through this study, it is confirmed that the final end-milled side wall is generated in the regions where cutting areas are constant and decreasing in the down-cut. Similarly, in stable up-cut, it is also generated in the regions where cutting areas are increasing and constant. It is found that the transition point appears when the region changes.

Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments- (볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가)

  • 이채문;김석원;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

Cutting Performance of a Developed Small-angle Spindle Tool (소형 앵글 스핀들 공구의 절삭성능에 관한 연구)

  • Kim, Jin Su;Kim, Yohng Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.