• Title/Summary/Keyword: Doublet state

Search Result 23, Processing Time 0.02 seconds

Nonlinear Flutter Analysis of Missile Fin considering Dynamic Stiffness of Actuator (구동장치의 동강성을 고려한 미사일 조종날개의 비선형 플러터 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In;Han, Jae-Hung;Shin, Young-Suk;Lee, Yeol-Wha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • Nonlinear aeroelastic analyses of a missile control fin are performed considering backlash and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces, and aerodynamic forces are approximated by the minimum-state approximation. For nonlinear flutter analysis backlash is represented by a free-play and is linearized by using the describing function method. Also, dynamic stiffness is function of frequency and is calculated by solving equation of motion for actuator. The linear and nonlinear flutter analyses show that the aeroelastic characteristics are significantly dependent on the backlash and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below the linear divergent flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are also investigated in the time domain.

Electronic Structure of Iron and Molybdenum in $Li_2FeMoO_4Cl$ and Its Crystal Symmetry ($Li_2FeMoO_4Cl$의 결정구조와 Fe 및 Mo의 전자구조 연구)

  • Choy, Jin-Ho;Park, Nam-Gyu;Chang, Soon-Ho;Park, Hyung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.446-452
    • /
    • 1995
  • Lithium intercalates, $Li_xFeMoO_4Cl$ ($1{\leq}X{\leq}2$) prepared by electrochemical lithiation of $FeMoO_4Cl$ crystallizes in monoclinic structure for all x values as revealed by x-ray diffraction and galvanostatic discharge experiments. According to the x-ray photoelectron spectroscopic study, Fe(III) is at first reduced to Fe(II) upon lithium intercalation with the x domain of $0{\leq}X{\leq}1$, where the crystal symmetry is changed from tetragonal to monoclinic. On the other hand, Mo(VI) is reduced to lower valent state upon further lithium intercalation ($1{\leq}X{\leq}2$), where no crystal symmetry transformation and reduction of Fe(II) to lower valent state are observed. The Mo 3d spectrum for $Li_2FeMoO_4Cl$ appears as a complex shape, but can be deconvoluted into the three sets of the doublet on the basis of Gaussian function, those which correspond to Mo(VI), Mo(V) and Mo(IV) states, respectively. The mixed valent states of molybdenum after further lithiation may be due to a competitive reaction between the formation of Mo(V) and its disproportionation to Mo(IV) and Mo(VI).

  • PDF

A Study on the Iron Compounds of Cinder Cones' Scoria in the Southern Area of Halla Mt., Jeju Island (제주도 한라산 남부 지역 분석구 스코리아의 철 화합물에 관한 연구)

  • Ko, Jeong Dae;Choi, Won Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.213-218
    • /
    • 2016
  • This study reviewed mineral composition on Scoria samples of this area, atomic value state of oxidized steel, and magnetic property in order to look into characteristics of scoria that was distributed in southern area of mountainous areas, Halla Mt. of Jeju Island. By XRD analysis, mineral composition was confirmed, and characteristics of iron compounds existed in samples were investigated through $M{\ddot{o}}ssbauer$ spectroscope. Composing minerals could be learnt as feldspar basalt from XRD analysis because composting minerals were composed of quartz and feldspar anorite mainly, and iron compounds were made up with olivine, pyroxene, ilmenite, hematite, and magnetite. By $M{\ddot{o}}ssbauer$ spectroscope analysis on these iron compounds. it consisted of hematite and magnetite which showed hyperfine magnetic field of sextet mostly, and also doublet by olivine, pyroxene, ilmenite could be seen as appearing together. As a result of comparing with samples of Jeju western area having been announced in previous research, I.S. and Q.S. values of olivine, $Fe^{2+}$, were 122 mm/s and 3.09~3.13 mm/s respectively, and a fact could be known that $Fe^{2+}$ olivine having similar structure each other was contained, and the ratio of $Fe^{3+}/Fe_{tot.}$. was 85.90~92.82 %. From these findings, it was able to be presumed that they belonged to samples having been formed on the land at the same period of time. As a result of investigating area ratio of tetrahedron (A site) and octahedron (B site) regarding magnetite in samples, it was turn out to be 0.22~0.55 less than 2.