• 제목/요약/키워드: Double-faced wall stagnation flow burner

검색결과 2건 처리시간 0.022초

양면정체유동버너를 이용한 탄소나노튜브 합성에 대한 연구 (Studies on Combustion Synthesis of Carbon Nanotubes Using a Double-faced Wall Stagnation Flow Burner)

  • 홍영택;우상길;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2154-2159
    • /
    • 2007
  • The potential of using a double-faced wall stagnation flow burner in mass production of carbon nanotubes was evaluated experimentally and computationally. With nitrogen-diluted premixed ethylene-air flames established on the Nickel-coated stainless steel double-faced wall, the propensities of carbon nanotube formation were experimentally determined using SEM and FE-TEM images and Raman spectroscopy, while the flame structure was computationally predicted using a 3-dimensional CFD code with a reduced reaction mechanism. The uniformity and yields of synthesized carbon nanotubes were evaluated in terms of the flame stretch rates. Results show substantial increase of area on the wall surface where uniform carbon nanotubes are synthesized with using the double-faced wall stagnation flow burner due to enhanced uniformity of temperature distribution along the wall surface and support the potential of using a double-faced wall stagnation flow burner in mass production of carbon nanotubes.

  • PDF

자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구 (Combustion synthesis of carbon nanotubes using their self-catalytic behavior)

  • 우상길;홍영택;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF