• Title/Summary/Keyword: Double-Coaxial Diffusion Combustor

Search Result 4, Processing Time 0.021 seconds

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(III) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2326-2336
    • /
    • 1996
  • So most practical combustor is considered to the swirl flame, it is very important to examinate swirl flame structure and combustion characteristics. Recently, attention has been paid to the flame diagnostic by radical luminous intensity. For swirl flame structure and combustion characteristic, reverse flow boundary, temperature, ion current and radical luminous intensity were measured in the double-coaxial swirl combustor which was used principle of multi-annular combustor. This study had three experimental condition, S-type, C-type, SC-type. S-type and C-type flames were formed recirculation zone, but SC-type flame wasn't formed. C-type flame had two recirculation zone. The position with maximum value of ion current and CH-radical, temperature and OH-radical had similarity distribution almost. Therefore, it is possible that the macro structure of flame was measured by radical luminous intensity in the high intensity of turbulent combustion field which was formed by swirl.

Experimental Study on the Combustion Characteristics of Syngas-Oxyfuel Diffusion Flames (Syngas-순산소 확산화염의 연소특성에 관한 실험적 연구)

  • Lee, Sang-Min;Choi, Won-Seok;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.553-560
    • /
    • 2010
  • The characteristics of syngas-oxyfuel combustion has been investigated experimentally in the present study. Experimental measurements were conducted to aid a fundamental design of a syngas-oxyfuel combustor with a double coaxial burner configuration. To examine the effects of different syngas fuels on combustion characteristics, various fuel types are utilized such as commercial coal gases (Texaco, Shell), COG (cokes oven gas), and $CH_4$ as a main component of natural gas. $CO_2$ was added to the four fuel types as a diluent gas to reduce the flame temperature. The flame images and emission characteristics of NOx and CO were examined for various equivalence ratio and $CO_2$ dilution ratio. The results show that CO emission was rapidly increased as equivalence ratio approached the stoichiometry condition by reducing the amount of oxygen. As the $CO_2$ dilution increased, CO emission increased while NOx emission decreased due to reduced flame temperature. When the syngas-oxyfuel combustor is operated with 20~40% of $CO_2$ dilution ratio, the CO and NOx emission levels were kept below 50 ppm and 25 ppm, respectively, with a high concentration of $CO_2$ over 95 vol.% in exhaust gases.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(II) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구(2))

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1050-1060
    • /
    • 1996
  • Recently, attention has been paid to the flame diagnostic by noncontact methods which dose not deform the flame shape. One of them is a method which is using the radical luminous intensity. Generally, this diagnostic method using radical luminous has been investigated its reliability by applying to laminar flame. This study, however, investigated each radical luminous signals through stocastical analysis like auto-correlation, cross-correlation, phase and coherence which were acquired from measuring radical luminous intensity of OH, CH, $O_{2}$, radicals in turbulent diffusion flame. To compare radical luminous intensity in flame with temperature, ion current and concentration , radious distribution of each properties was investigated and considered. In radical luminous intensity, correlation in the reaction zone of flame was higher than in correlation in combusted gas zone. And radious distribution of radical luminous intensity was corresponded with radious distribution of temperature, ion current and concentration. The result of the study confirms that a radical luminous flame diagnosis is possible in the turbulent diffusion flame.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.