• Title/Summary/Keyword: Double steel plate concrete composite shear walls

Search Result 4, Processing Time 0.02 seconds

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation

  • Xiaohu Li;Hao Luo;Xihao Ren;Tao Zhang;Lei Li;Ke Shi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.345-356
    • /
    • 2024
  • This paper aims to investigate the seismic behavior of double steel plate and concrete composite shear wall (DSCW) of shield buildings in nuclear power engineering through experimental study. Hence, a total of 10 specimens were tested to investigate the hysteretic performance of DSCW specimens in detail, in terms of load vs. displacement hysteretic curves, skeleton curves, failure modes, flexural strength, energy dissipation capacity. The experimental results indicated that the thickness of steel plate, vertical load and stiffener have great influence on the shear bearing capacity of shear wall, and the stud space has limited influence on the shear capacity. And finally, a novel simplified formula was proposed to predict the shear bearing capacity of composite shear wall. The predicted results showed satisfactory agreement with the experimental results.

Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 세장한 이중강판합성벽의 비선형해석)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.505-517
    • /
    • 2008
  • A numerical analysis method was studied to predict the nonlinear behavior of slender double skin composite walls. For convenience in numerical analysis, the model for the double skin composite wall was developed as a macroscopic model that can predict nonlinear behavior with relatively simplified models. For the wall showing flexure-dominant behavior, a multiple layer model was used. Each layer was modeled with composite elements of concrete and steel plate. An X-type truss model was used for coupling beams showing shear-dominant behavior. To describe the cyclic behavior of concrete and steel elements, simplified cyclic models for the materials were proposed. The proposed analysis model was applied to isolated walls and coupled walls with rectangular or T-shaped cross-sections. The analytical results were compared with existing test results.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.