• Title/Summary/Keyword: Double staining with uranyl acetate and lead

Search Result 3, Processing Time 0.022 seconds

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

A Morphological Study on the Changes in Rat's Gastrocnemius (쥐의 비복근 섬유의 변화에 대한 형태학적 연구)

  • Huh Yang-Hoon;Choi Jae-Cheong
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.2
    • /
    • pp.71-76
    • /
    • 1998
  • Twelve Spraque-Dawley healthy male rats(average weight ; 250g)were used to study the morphological changes of mitochondria, myofibril, muscle cell nucleus, triad. They were devided into 3 groups : normal daily activity (Group 1), 2weeks immobilization (Group 2), 4 weeks immobilization(Group 3). Left ankle of Group 2 and 3 were immobilized with plaster cast in $65^{\circ}$ plantarflexed position. The gastrocnemius were removed from 12 rats. Muscle fibers were observed electronmicroscopically by double staining with uranyl acetate and lead citrate, All the variables of Group 2 and 3 that selected in this study were significantly decreased when decreased with control value (p<.05) but also muscle fibers showed extensive damage, characterized by irregularity of mitochondrias and wide separation of myofibrils. irregularity and thinness of myofilaments and abnormal shape of muscle cell nucleus and unclear triad. Especially, sarcomere length of Group 3 were singnificantly decreased when compared with Group 2(p<.01).

  • PDF

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF