• Title/Summary/Keyword: Double plate

Search Result 357, Processing Time 0.024 seconds

Screening of Microorganisms Having Inhibitory Activity against $\beta$-lactamase ($\beta$-Lactamase 저해능이 있는 방선균의 선별)

  • 강희일;김영일;박영주
    • YAKHAK HOEJI
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 1984
  • Microorganisms having beta-latamase inhibitory activity were selected from soil samples collected from 63 spots throughout the country. Screening procedures consist of two steps. Those are growth inhibition test of penicillinase-producing Staphylococcus aureus by double-layered agar plate containing penicillin G as a substrate, and that of penicillin sensitive Staphylococcus aureus ATCC 6538 in the similiar condition including penicillinase. Finally, a strain was selected from a soil sample of Pa-ju, Kyeong-gi Do. This strain was classified as a Streptomyces sp. by ISP(International Streptomycete Project) and Bergey's manual.

  • PDF

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Strength Property of Double Shear Bolted-Connections of Larch (낙엽송 부재의 이중 전단 볼트 접합부 강도 성능)

  • Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.7-16
    • /
    • 2005
  • This study was carried out to evaluate the structural property of double shear bolted connections in Korean Larch. For the main member, sawn lumber and Glulam were used in which thickness of lumber is 39 mm, 89 mm, 139 mm, 189 mm and Glulam 80 mm, 140 mm, 170 mm. For the side member, sawn lumber and steel plate were used in which thickness of lumber is the same of the main member and steel plate is 6mm. And connections were jointed by M12, M16, M20 bolts which were usually used for wood constructions in Korea. Directions of loading to connections were perpendicular and parallel to grain of main and side member. First, through the dowel bearing test, the dowel bearing strength was evaluated and through the bolt bending tests, the bolt bending strength was evaluated. And then experiments for the connection were performed. Obtained results from experiments were compared with calculated values by EYM and analyzed. Strength of double shear bolted connections in Korean Larch was similar or higher than calculated value by EYM. Especially when the side member was made by the sawn lumber, it was similar to the calculated value. In failure mode, the mode was effected by the knot and the dry defect. In the thin main member, it was shown mode I and as the thickness of the main member was thicker, it was changed into mode III.

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

Aerodynamic admittances of bridge deck sections: Issues and wind field dependence

  • Zhang, Zhitian;Zhang, Weifeng;Ge, Yaojun
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.283-299
    • /
    • 2017
  • Two types of aerodynamic admittance function (AAF) that have been adopted in bridge aerodynamics are addressed. The first type is based on a group of supposed relations between flutter derivatives and AAFs. In so doing, the aero-elastic properties of a section could be used to determine AAFs. It is found that the supposed relations hold only for cases when the gust frequencies are within a very low range. Predominant frequencies of long-span bridges are, however, far away from this range. In this sense, the AAFs determined this way are of little practical significance. Another type of AAFs is based on the relation between the Theodorsen circulation function and the Sears function, which holds for thin airfoil theories. It is found, however, that an obvious illogicality exists in this methodology either. In this article, a viewpoint is put forward that AAFs of bluff bridge deck sections are inherently dependent on oncoming turbulent properties. This kind of dependence is investigated with a thin plate and a double-girder bluff section via computational fluid dynamics method. Two types of wind fluctuations are used for identification of AAFs. One is turbulent wind flow while the other is harmonic. The numerical results indicate that AAFs of the thin plate agree well with the Sears AAF, and show no obvious dependence on the oncoming wind fields. In contrast, for the case of bluff double-girder section, AAFs identified from the turbulent and harmonic flows of different amplitudes differ among each other, exhibiting obvious dependence on the oncoming wind field properties.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Permeation Characteristics of the Plate & Frame Membrane Module with Protuberances (돌기형 평판 분리막 모듈의 투과특성)

  • Chung, Kun-Yong;Jeon, Sung-Il
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.168-175
    • /
    • 2008
  • This study was carried out for the plate and frame membrane modules equipped with and without plastic protuberances on the support frame in order to determine the effect of eddy flow induced by the protuberances on permeate flux. The initial time for rapidly declined permeate flux on the module with protuberances was delayed twice or more than that on the module without protuberances when kaolin solution was permeated at the operating pressures from 0.4 to 1.6 bar. Also decreasing ratio of the kaolin solution to pure water flux for module with protuberances was 1 to 5% lower than that for module without protuberances. The flux improvement due to protuberances at laminar flow corresponding Reynolds number 1,750 was about double as compared with that in the transition flow region. In general, the kaolin fouling reduction for the plate module with protuberances during initial filtration process was very effective, even though the permeate flux after 60 minutes filtration did not increase significantly.

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization (알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구)

  • Han, Soon-Woo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • In this study, we discussed the weight reducing of a urban railway-car body, in particular, of the Korean EMU, by optimizing topology and size of aluminum extrusion profiles. The heaviest parts of aluminum railway-car bodies, i.e., the base plate of underframe and side panels of side frame composed of double skin structures are considered for optimization. Topology optimization process is applied to obtain get an optimized rib structure for the base plate. The thickness of ribs and plates of the topologically optimized base plate and the existing side panel are also optimized by employing the size optimization process. The results are verified by comparing the maximum von Mises stresses and maximum deformation in the case of the existing design with those in the case of the optimized design. It is shown that the weight of a base plate and side panel can be reduced by 12% and that the weight of the whole car body can be reduced by 8.5%.