• Title/Summary/Keyword: Double pipe heat exchanger with helical insert device

Search Result 1, Processing Time 0.017 seconds

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.