• Title/Summary/Keyword: Double packer

Search Result 14, Processing Time 0.031 seconds

Development of Hydraulic Rock Splitting Technique for Rock Excavation (암반 굴착을 위한 수압암반절개 기술 개발)

  • Park, Jongoh;Lee, Dal-Heui
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.353-360
    • /
    • 2016
  • Tests of hydraulic rock splitting were conducted using double packer at the 1, 2 free surface in the limestone mining and granodiorite Suksan area, respectively. The method of hydraulic rock splitting was applying hydraulic power in the interval layer using double packer. As a result of tests, a crack occurred. At about 6.5 MPa and 13 MPa, a crack occurred in 2 free surface. Any crack did not occur in the 1 free surface. Rather, used 1 double packer was broken in the 1 free surface. Also, it was confirmed that the water pressure of the interval increased through the existing crack and the new crack in the test areas.

Field Tests of Hydraulic Rock Splitting Technique Using Arrays of Injection Holes with Guide Slots (유도슬롯과 주입공 배열을 이용한 수압암반절개 현장 실험)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.405-415
    • /
    • 2019
  • The cracks induced by hydraulic rock splitting technique are formed in the direction parallel to the free plane, which is perpendicular to the minimum principal stress of the ground, or is affected by the pre-existing microcracks. In this study, the hydraulic rock splitting experiments were conducted in which the guide slot was engraved in the direction parallel to the borehole axis on the biotite granite slope, and the hydraulic pressure was injected through the double packer pressure and interval section. The test results show that the cracks along with the guide slots were induced either by the double packer pressurization or the injection of hydraulic pressure into interval section, some cracks extended across the boreholes. Therefore, the hydraulic rock splitting test is expected to control efficiently the induced cracks if the guide slots are engraved in the direction of splitting and a big flow rate is applied.

Acute cocaine intoxication in a body packer

  • Park, Mee-Jung;Lim, Mi-Ae;Chung, Hee-Sun
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.103-106
    • /
    • 2006
  • A 35-year-old Perubian who suffered from grand mal seizures died in the aircraft on his way from the United States to Hongkong via Incheon international airport of Korea. While performing the autopsy, 115 packs made with double layer of transparent film and black plastic bag containing cocaine were found in the ileum and large intestine. Among of them, 3 packs were ruptured. To determine the concentration of cocaine and its metabolites, blood, urine, bile, liver, spleen, heart, kidney, brain and gastric contents were taken and toxicological analysis was performed. Gas chromatography/mass spectrometry (GC/MS) following liquid-phase extraction using chloroform:isopropanol (=9:1) and derivatization with bis(trimethylsilyl)-trifluoroacetamide (contains 1% trimethylchlorosilane) was performed. High levels of cocaine, benzoylecgonine (BE) and ecgonine methylester (EME) were found in the postmortem blood (0.96, 3.09 and $5.59{\mu}g/mL$) and urine (32.85, 145.35 and $53.17{\mu}g/mL$), respectively. Cocaine and its metabolites were also detected in all other biological specimen.

International Joint Research for the Colloid Formation and Migration in Grimsel Test Site: Current Status and Perspectives

  • Sang-Ho Lee;Jin-Seok Kim;Bong-Ju Kim;Jae-Kwang Lee;Seung Yeop Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.455-468
    • /
    • 2022
  • Colloid Formation and Migration (CFM) project is being carried out within the Grimsel Test Site (GTS) Phase Ⅵ. Since 2008, the Korea Atomic Energy Research Institute (KAERI) has joined CFM to investigate the behavior of colloid-facilitated radionuclide transport in a generic Underground Research Laboratory (URL). The CFM project includes a long-term in-situ test (LIT) and an in-rock bentonite erosion test (i-BET) to assess the in-situ colloid-facilitated radionuclide transport through the bentonite erosion in the natural flow field. In the LIT experiment, radionuclide-containing compacted bentonite was equipped with a triple-packer system and then positioned at the borehole in the shear zone. It was observed that colloid transport was limited owing to the low swelling pressure and low hydraulic conductivity. Therefore, a postmortem analysis is being conducted to estimate the partial migration and diffusion of radionuclides. The i-BET experiment, that focuses more on bentonite erosion, was newly designed to assess colloid formation in another flow field. The i-BET experiment started with the placement of compacted bentonite rings in the double-packer system, and the hydraulic parameters and bentonite erosion have been monitored since December 2018.

Deep Hydrochemical Investigations Using a Borehole Drilled in Granite in Wonju, South Korea

  • Kim, Eungyeong;Cho, Su Bin;Kihm, You Hong;Hyun, Sung Pil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.517-532
    • /
    • 2021
  • Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.

A Study on Grouting Technology Using Expansion Double Packers for Sectional Blocking between Groundwater Borehole and Inner Casing (확장형 이중패커를 이용한 지하수 공벽과 내부케이싱의 구간차폐 그라우팅 기술에 대한 연구)

  • Cho, Heuy Nam;Choi, Sung Ouk;Park, Jong Oh;Bae, Sei Dal;Lee, Byung Yong;Choi, Sang Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • In installation of groundwater wells, grouting materials are injected between the groundwater borehole and the inner casing in order to prevent infiltration of contaminated groundwater from the top soil layers into wells. The injection device of grouting materials is commonly composed of an inlet head device with an expansion packer, a cylinder capable of storing the grouting materials, and an air cylinder. In this work, two types of common grouting materials, silicon and cement materials, were tested for their performances as grouting media. For silicon. silicon was mixed with clay or calcite, and tested for their tensile strength and underwater reactivity. Both silicon-clay and silicon-calcite mixtures had adequate flow and adhesiveness. For cement material, general cement, ultra-rapid harding cement, and natural cement were respectively mixed with three different soil types including coarse-grained granite, fine-grained granite, and gneiss, and direct shearing tests were conducted after hardening. Under grouting depth condition of 30 m, the minimum adhesive strength was greater for weathered gneiss than non-weathered gneiss with its maximum values obtained from the mixtures of ultra rapid-harding cement.

Correlation between the Distribution of Discontinuities and Groundwater Flow in Fractured Rock (온도검층과 수압시험을 통한 파쇄암반의 단열분포와 지하수 흐름 상관성 고찰)

  • Park, Seunghyuk;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.505-513
    • /
    • 2016
  • The qualitative distribution of a fractured aquifer was characterized by electrical resistivity surveying as a part of basic groundwater investigation in Jangseong. The results were then used to choose sites for observation wells. The locations and distributions of permeable discontinuities were studied by analyses of temperature logs, a borehole image-processing system (BIPS), and hydraulic pressure testing using a double packer. The pressure test showed that the size of the discontinuities correlated with the Lugeon value and the results of the temperature log. The results show that temperature measurement is an effective method to identify permeable discontinuities, with the temperature difference correlating with the size of the aperture of the discontinuity.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Preliminary Report for KD Subsurface Oil Storage (원유 비축시설 건설을 위한 예비조사)

  • Han, Jeong Sang;Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • The rocks exposed in the investigation area are andesite of Late Cretaceous age, and syenite and aplitic granite of Bulgugsa Series of Early Cretaceous Period, which is intruded in the older andesitic rock. The strike and dip of major joint is $N10^{\circ}$ to $60^{\circ}E$, and $70^{\circ}SE$ to vertical respectively. According to seismic exploration, lower velocity zone, deemed to be fractured and/or crushed zone, is appeared along the gully center of east flank of the area. Test drilling shows that andesite bedrock is mostly very hard, massive, and very fine to medium grained and has almost 100 percent RQD and core recovery. In comparision with andesitic bedrock, intruded syenite cores show that it is highly crush especially at the depth from 55m to 63m.

  • PDF

Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area (괴산지역 시추공 지하수의 자연방사성물질 산출특성과 지화학적 기원)

  • Kim, Moon Su;Yang, Jae Ha;Jeong, Chan Ho;Kim, Hyun Koo;Kim, Dong Wook;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.535-550
    • /
    • 2014
  • The origins and varieties of natural radioactive materials, including uranium and radon-222, were examined in a drilled borehole extending to a depth of 120 m below the surface in the Goesan area. In addition to core samples, eight groundwater samples were collected at different depths, using a double packer system and bailer, and their geochemical characteristics were determined. Most of the rock samples from the drilled core consisted of granite porphyry, with sedimentary rocks (slate, carbonate, or lime-silicates) and pegmatite occurring in certain sections. The pH of samples varied from 7.8 to 8.4, and the groundwater was of a Na-$HCO_3$type. Uranium and thorium concentrations in the core were < 0.2-14.8 ppm and 0.56-45.0 ppm, respectively. Observations by microscope and an electron probe microanalyzer (EPMA) showed that the mineral containing the natural radioactive materials was monazite contained in biotite crystals. The uranium, which substituted for major elements in the monazite, appeared to have dissolved and been released into the groundwater in a shear zone. Concentrations of Radon-222 in the borehole showed no close relationship with levels of uranium. The isotopes of noble gases, such as helium and neon, would be useful for analyzing the origins and characteristics of the natural radioactive materials.