• Title/Summary/Keyword: Double neutron capture

Search Result 3, Processing Time 0.022 seconds

The Evaluation of 166Ho Product by Double Neutron Capture from HANARO Research Reactor (하나로를 이용한 중성자 이중 포획반응에 의한 166Ho 생성량 평가)

  • Kim, Jong-Bum;Choi, Kang-Hyuk
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.111-117
    • /
    • 2015
  • In this paper, production of $^{166}Ho$ by double neutron capture from HANARO research reactor was evaluated. This production approach provides $^{166}Ho$ with high specific activity. $^{164}Dy$ is transmuted into $^{165g+m}Dy$ by (n,${\gamma}$) reaction, then $^{165g+m}Dy$ is transmuted into $^{166}Dy$ by (n,${\gamma}$) reaction. At the end of neutron irradiation, population of $^{166}Dy$ atoms reaches highest point. And $^{164}Dy$ exists as a mixture with $^{165m}Dy$, $^{165}Dy$, $^{166}Ho$ and $^{165}Ho$ at this point. To obtain $^{166}Ho$ with high specific activity, Ho isotopes from irradiated target is separated out. Then $^{166}Ho$ decayed from $^{166}Dy$ is eluted at radioactive equilibrium state. At each step, the number of relevant nuclide is calculated by the state equation. The neutron irradiation time for maximum $^{166}Dy$ is calculated for 283 hour. When 100 mg target of $Dy_2O_3$ (96.8% enriched $^{164}Dy$) is used, possible activity of $^{166}Ho$ is 3.54 Ci($1.31{\times}10^{11}Bq$). For separation efficiency of Dy/Ho is 99.99%, $^{166}Ho/Ho$ is 0.62.

Production of Re-188 (Rhenium-188 생산)

  • Yang, Seung-Dae;Suh, Yong-Sup;Kim, Sang-Uk;Lim, Sang-Moo
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.189-192
    • /
    • 1999
  • $^{188}Re$ (${\beta}^-=2.2$ MeV; ${\gamma}^-$=155 keV; $T_{1/2}$=16.9 hours) is an attractive therapeutic radioisotope which is produced from decay of reactor-produced tungsten-188 parent ($T_{1/2}$=69 days). $^{188}W$ has been produced from the double neutron capture reaction of $^{186}W.\;^{188}Re$ can be easily obtained by elution of saline on alumina based $^{188}W/^{188}Re$ generator, which is commercially available. Complexes labelled with $^{188}Re$ have been developed for the radiotherapy treatment of diseases because of the desirable nuclear properties of the radioisotope and it's chemical properties similar to those of technetium, a well established diagnostic agent.

  • PDF

Consideration of the benefits of using a high current accelerator in BNCT

  • Cho, Ilsung;Min, Sun-Hong;Park, Chawon;Kim, Minho;Lee, Kyo Chul;Lee, Yong Jin;Hong, Bong Hwan;Lim, Sang Moo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Boron Neutron Capture Therapy (BNCT) has the advantage of selectively removing cancer cells ingesting boron compounds. In this study, the benefits for treatment time and boron compound injection dose were compared between current neutron sources and a high current neutron sources to be developed in near future. The time-activity curve (TAC) of GBM (Glioblastoma) for one bolus injection was obtained by applying modified 3 compartment model. The treatment time was determined for an accelerator-based neutron sources at the present time and a high current accelerator based neutron source to be developed in the near future. In the case of the double amount of IAEA-recommended neutron flux, the treatment time was shortened to 15 minutes. In the case of high current accelerators, which are five times the amount of IAEA-recommended neutron flux, the irradiation time is within 5 minutes. The use of a high current accelerator based neutron source in BNCT is advantageous in terms of treatment time. In addition, it can increase the efficiency of use of neutrons and reduce the boron compound injection dose to patients, thus reducing pharmacological toxicity.