• Title/Summary/Keyword: Double cascade

Search Result 31, Processing Time 0.022 seconds

A method for purifying reprocessed uranium from even isotopes under conditions of multiple recycle

  • Smirnov, A.Yu.;Palkin, V.A.;Chistov, A.V.;Sulaberidze, G.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3650-3659
    • /
    • 2022
  • We proposed a modification of a double cascade scheme to enrich reprocessed uranium. Such a cascade scheme represents a combination of one cascade with "broadening" of the flow and an ordinary three-flow cascade. A calculation and optimization method has been developed for the proposed scheme according to various efficiency criteria. It is shown that the proposed scheme makes it possible to obtain low-enriched uranium of commercial quality using reprocessed uranium of different initial compositions. For example, the enrichment of reprocessed uranium, which had gone through five consequent recycles, was considered. The proposed scheme allowed to enrich it with simultaneous fulfillment of restrictions on isotopes 232U, 234U, and 236U. Such results indicate the scheme's applicability under conditions of multiple recycling of uranium in reactor fuel. Computational experiments have shown that in the proposed modification, a noticeable saving of natural uranium in the cycle (~18%) can be achieved, provided that the additional consumption of separative work does not exceed 10%, compared with the case of enrichment of natural uranium to obtain LEU of equivalent quality.

A Study of Wall Shape Design for Cascade Experiment (케스케이드 실험을 위한 벽면형상 설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.148-151
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

  • PDF

Sidewalls Design for a Double-Passage Cascade Model (2피치 유로의 캐스케이드 모델을 위한 벽면설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.797-806
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient-based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

Analysis of Computational Complexity for Cascade AOA Estimation Algorithm Based on Single and Double Rim Array Antennas (단일 및 이중 림 어레이 안테나 기반 캐스케이드 AOA 추정 알고리즘의 계산복잡도 분석)

  • Tae-Yun, Kim;Suk-Seung, Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1055-1062
    • /
    • 2022
  • In order to use the Massive MIMO (Multi Input Multi Output) technology using the massive array antenna, it is essential to know the angle of arrival (AOA) of the signal. When using a massive array antenna, the existing AOA estimation algorithm has excellent estimation performance, but also has a disadvantage in that computational complexity increases in proportion to the number of antenna elements. To solve this problem, a cascade AOA estimation algorithm has been proposed and the performance of a single-shaped (non)massive array antenna has been proven through a number of papers. However, the computational complexity of the cascade AOA estimation algorithm to which single and double rim array antennas are applied has not been compared. In this paper, we compare and analyze the computational complexity for AOA estimation when single and double rim array antennas are applied to the cascade AOA estimation algorithm.

Optimization of sidewalls for a Double-Passage Cascade Experiment (2피치 유로 캐스케이드 실험을 위한 벽면 최적화에 관한 연구)

  • Cho, Choong-Hyun;Ahn, Koo-Kyoung;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.969-978
    • /
    • 2008
  • In a linear cascade experimental apparatus, when it adopts only few blades as well as satisfies the periodic condition between blades, it gives several advantages in experiment. In this study, wall design on a cascade experimental apparatus is conducted to obtain the periodic condition on two blades installed within a passage of which the width is double pitch. The Mach number difference on the blade surface obtained with the periodic and wall condition is chosen as an objective function, and twelve design variables which are related to the wall shape are selected. A wall shape is designed using a gradient-based optimization method. Adjustment of range and weighting function are applied to calculate the objective function to avoid unrealistic evaluation of the objective function. By applying these methods, the computed results show same flow structures obtained with the periodic condition.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Numerical Analysis on Cascade Performance of Double-Circular-Arc Hydrofoil (수치 모사를 통한 이중원호 익렬의 성능 예측)

  • Jeong, Myeong-Gyun;O, Jae-Min;Paeng, Gi-Seok;Song, Jae-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2002
  • In order to design and analyze the performance of an axial-flow pump it is necessary to know the flow deviation, deflection angle and pressure loss coefficient as a function of the angle of incidence for the hydrofoil section in use. Because such functions are unique to the particular section, however, general correlation formulae are not available for the multitude of hydrofoil profiles, and such functions must be generated by either experiment or numerical simulation for the given or selected hydrofoil section. The purpose of present study is to generate design correlations for hydrofoils with double circular arc (DCA) camber by numerical analysis using a commercial code, FLUENT. The cascade configuration is determined by a combination of the inlet blade angle, blade thickness, camber angle, and cascade solidity, and a total of 90 cascade configurations are analyzed in this study. The inlet Reynolds number based on the chord and the inlet absolute velocity is fixed at 5${\times}$10$\^$5/. Design correlations are formulated, based on the data at the incidence angle of minimum total pressure loss. The correlations obtained in this way show good agreement with the experiment data collected at NASA with DCA hydrofoils.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

Variation in Contour and Cancer of Stomach (위 형태와 위암과의 상호연관성에 관한 연구)

  • Lee, Won-Hong;Hwang, Seon-Moon;Yoon, Kwon-Ha
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.17-21
    • /
    • 1999
  • There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double-contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (p=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32,1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastritis or gastric ulcer.

  • PDF

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.