• Title/Summary/Keyword: Double activation

Search Result 192, Processing Time 0.022 seconds

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

Bottleneck Behavior of $^1H$ NMR Spin-lattice Relaxation in Ammonium Sulfate

  • Hong, Kwan-Soo;Yu, In-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.132-141
    • /
    • 2002
  • $^1H$ nuclear magnetic resonance (NMR) relaxations have been investigated in ammonium sulfate $((NH_4)_2SO_4)$ power at temperatures ranging form 102 K to 440 K. There is a bottleneck in the spin-lattice relaxation between the nuclear spin system and the hindered rotation of ammonium ions, which is certified by measuring the relaxation according to the initial condition of the spin system. For temperatures below 318 K the $^1H$ spin-lattice relaxations have double-exponential behaviors with the exponent, n, having a value 2>n>1 initially and n=l after a long time. Above 318 K not only is the relaxation exponential initially with exponent n=1, but it is a single-exponential over the entire time, resulting in one $T_1$ value. The two types of $NH_4^+$ ions have different activation energies for hindered rotation, $E_a^1=0.27{\pm}0.02eV$ and $E_a^11=0.12{\pm}0.0eV$, in the ferroelectric phase.

  • PDF

Growth and Optical Properties for $AgGaSe_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한$AgGaSe_2$ 단결정 박막 성장과 광학적 특성)

  • Hong, Kwang-Joon;Back, Seoung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.124-127
    • /
    • 2003
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnance. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition ($E_x$) observable only in high quality crystal and neutral bound excition ($D^{\circ}$,X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Excited State Intramolecular Proton Transfer and Physical Properties of 7-Hydroxyquinoline

  • Kang Wee-Kyeong;Cho Sung-June;Lee Minyung;Kim Dong-Ho;Ryoo Ryong;Jung Kyung-Hoon;Jang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.140-145
    • /
    • 1992
  • The excited state intramolecular proton transfer and physical properties of 7-hydroxyquinoline are studied in various solutions and heterogeneous systems by measuring steady state and time-resolved fluorescence, reflection and NMR spectra. Proton transfer is observed only in protic solvents owing to its requirement of hydrogen-bonded solvent bridge for proton relay transfer. The activation energies of the proton transfer are 2.3 and 5.4 kJ/mol in $CH_3OH$ and in $CH_3OD$, respectively. Dimers of normal molecules are stable in microcrystalline powder form and undergo an extremely fast concerted double proton transfer upon absorption of a photon, consequently forming dimers of tautomer molecules. In the supercage of zeolite NaY, its tautomeric form is stable in the ground state and does not show any proton transfer.

Micro-Structural and Electrochemical Properties of Activated Carbon Synthesized from Natural Bamboo (천연 대나무로부터 합성된 활성 탄소의 미세구조 및 전기화학적 특성)

  • YANG, DONG-CHEOL;KIM, SU-WON;CHOURASHIYA, M.G.;PARK, CHOONG-NYEON;PARK, CHAN-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2019
  • Activated carbon was synthesized from bamboo charcoal by KOH activation at various temperatures for electrochemical double layer capacitor applications. The micro-structural and surface properties of all the samples were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption/desorption isotherm method. The electrochemical properties of the activated bamboo charcoal were examined by cyclic voltammetry in the potential window of -1.0 to 0.2 V in 6 M KOH electrolyte at different scan rates. An electrode made from the sample activated with 7.5 M KOH and heat treated at $750^{\circ}C$ for 3 h gave a maximum capacitance of 553 F/g at 1 mV/s and 450 F/g at 10mV/s.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

TNF in Human Tuberculosis: A Double-Edged Sword

  • Jae-Min Yuk;Jin Kyung Kim;In Soo Kim;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.4.1-4.19
    • /
    • 2024
  • TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

Effect of ATP on Calcium Channel Modulation in Rat Adrenal Chromaffin Cells (흰쥐 부신 크로마핀 세포 칼슘통로 조절에 미치는 ATP의 효과)

  • Kim, Kyung Ah;Goo, Yong Sook
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.157-166
    • /
    • 2014
  • ATP in quantity co-stored with neurotransmitters in the secretory vesicles of neurons, by being co-released with the neurotransmitters, takes an important role to modulate the stimulus-secretion response of neurotransmitters. Here, in this study, the modulatory effect of ATP was studied in $Ca^{2+}$ channels of cultured rat adrenal chromaffin cells to investigate the physiological role of ATP in neurons. The $Ca^{2+}$ channel current was recorded in a whole-cell patch clamp configuration, which was modulated by ATP. In 10 mM $Ba^{2+}$ bath solution, ATP treatment (0.1 mM) decreased the $Ba^{2+}$ current by an average of $36{\pm}6%$ (n=8), showing a dose-dependency within the range of $10^{-4}{\sim}10^{-1}mM$. The current was recovered by ATP washout, demonstrating its reversible pattern. This current blockade effect of ATP was disinhibited by a large prepulse up to +80 mV, since the $Ba^{2+}$ current increment was larger when treated with ATP ($37{\pm}5%$, n=11) compared to the control ($25{\pm}3%$, n=12, without ATP). The $Ba^{2+}$ current was recorded with $GTP{\gamma}S$, the non-hydrolyzable GTP analogue, to determine if the blocking effect of ATP was mediated by G-protein. The $Ba^{2+}$ current decreased down to 45% of control with $GTP{\gamma}S$. With a large prepulse (+80 mV), the current increment was $34{\pm}4%$ (n=19), which $25{\pm}3%$ (n=12) under control condition (without $GTP{\gamma}S$). The $Ba^{2+}$ current waveform was well fitted to a single-exponential curve for the control, while a double-exponential curve best fitted the current signal with ATP or $GTP{\gamma}S$. In other words, a slow activation component appeared with ATP or $GTP{\gamma}S$, which suggested that both ATP and $GTP{\gamma}S$ caused slower activation of $Ca^{2+}$ channels via the same mechanism. The results suggest that ATP may block the $Ca^{2+}$ channels by G-protein and this $Ca^{2+}$ channel blocking effect of ATP is important in autocrine (or paracrine) inhibition of adrenaline secretion in chromaffin cell.

Production of a hypothetical polyene substance by activating a cryptic fungal PKS-NRPS hybrid gene in Monascus purpureus (홍국Monascus purpureus에서 진균 PKS-NRPS 하이브리드 유전자의 발현 유도를 통한 미지 polyene 화합물의 생성)

  • Suh, Jae-Won;Balakrishnan, Bijinu;Lim, Yoon Ji;Lee, Doh Won;Choi, Jeong Ju;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • Advances in bacterial and fungal genome mining uncover a plethora of cryptic secondary metabolite biosynthetic gene clusters. Guided by the genome information, targeted transcriptional derepression could be employed to determine the product of a cryptic gene cluster and to explore its biological role. Monascus spp. are food grade filamentous fungi popular in eastern Asia and several genome data belong to them are now available. We achieved transcription activation of a cryptic fungal polyketide synthase-nonribosomal peptide synthase gene Mpfus1 in Monascus purpureus ${\Delta}MpPKS5$ by inserting Aspergillus gpdA promoter at the upstream of Mpfus1 through double crossover gene replacement. The gene cluster with Mpfus1 show a high similarity to those for the biosynthesis of conjugated polyene derivatives with 2-pyrrolidone ring and the mycotoxin fusarin is the representative member of this group. The ${\Delta}MpPKS5$ is incapable of producing azaphilone pigment, providing an excellent background to identify chromogenic and UV-absorbing compounds. Activation of Mpfus1 resulted in a yellow hue on mycelia and its methanol extract exhibit a maximum absorption at 365 nm. HPLC analysis of the organic extracts indicated the presence of a variety of yellow compounds in the extract. This implies that the product of MpFus1 is metabolically or chemically unstable. LC-MS analysis guided us to predict the MpFus1 product and to propose that the Mpfus1-containing gene cluster encode the biosynthesis of a desmethyl analogue of fusarin. This study showcases the genome mining in Monascus and the possibility to unveil new biological activities embedded in it.

Research on Immune Responses Induced by Salmonella Typhimurium Infectionin CRIP1-Deficient Condition (CRIP1결손조건 하에서 Salmonella Typhimurium 감염에 의해 유도되는 면역반응에 관한 연구)

  • Dongju Seo;Se-Hui Lee;Sun Park;Hyeyun Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Salmonella is a common food-borne intracellular bacterial pathogen that has triggered significant public health concerns. Salmonella hosts' genetic factors play a pivotal role in determining their susceptibility to the pathogen. Cysteine-rich intestinal protein 1 (CRIP1), a member of LIM/double zinc finger protein family, is widely expressed in humans, such as in the lungs, spleen, and especially the gut. Recently, CRIP1 has been reported as a key marker of several immune disorders; however, the effect of CRIP1 on bacterial infection remains unknown. We aimed to elucidate the relationship between Salmonella infection and CRIP1 gene deficiency, as Salmonella spp. is known to invade the Peyer's patches of the small intestine, where CRIP1 is highly expressed. We found that CRIP1-deficient conditions could not alter the characteristics of bone marrow-derived myeloid cells in terms of phagocytosis on macrophages and the activation of costimulatory molecules on dendritic cells using ex vivo differentiation. Moreover, flow cytometry data showed comparable levels of MHCII+CD11b+CD11c+ dendritic cells and MHCII+F4/80+CD11b+ macrophages between WT and CRIP1 knockout (KO) mice. Interestingly, the basal population of monocytes in the spleen and neutrophils in MLNs is more abundant in a steady state of CRIP1 KO mice than WT mice. Here, we demonstrated that the CRIP1 genetic factor plays dispensable roles in host susceptibility to Salmonella Typhimurium infections and the activation of myeloid cells. In addition, differential immune cell populations without antigen exposure in CRIP1 KO mice suggest that the regulation of CRIP1 expression may be a novel immunotherapeutic approach to various infectious diseases.