• Title/Summary/Keyword: Double Rings

Search Result 74, Processing Time 0.029 seconds

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.

Combined Role of Two Tryptophane Residues of α-Factor Pheromone

  • Hong, Eun Young;Hong, Nam Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.600-608
    • /
    • 2013
  • Amide analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMYCONH$_2$) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide $[Ala_3]{\alpha}$-factor amide (2) and $[Aib_3]{\alpha}$-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one $[Ala^1]{\alpha}$-factor amide (1) and $[Aib^1]{\alpha}$-factor amide (4), reflecting that $Trp^3$ may plays more important role than $Trp^1$ for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of ${\alpha}$-factor ligand to activation of Ste2p through interaction with residue $Tyr^{266}$ and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, $[Ala^{1,3}]{\alpha}$-factor amide (3), $[Aib^{1,3}]{\alpha}$-factor amide (6), [D-$Trp^3]{\alpha}$-factor amide (8) and [des-$Trp^1,Phe^3]{\alpha}$-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

Crystal Structures of Zeolite X Exchanged by Two Different Cations. Structures of Cd32Cs28-X and Cd28Rb36-X (X=Si100Al92O384)

  • Jeong, Gyoung-Hwa;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1121-1126
    • /
    • 2002
  • Two anhydrous crystal structures of fully dehydrated Cd2+ - and Cs+ -exchanged zeolite X, Cd32Cs28Si100Al92O384 (Cd32Cs28-X: a = 24.828(11) $\AA)$ and fully dehydrated Cd,sup>2+ - and Rb+ -exchanged zeolite X, Cd28Rb36Si100Al92O384 (Cd28Rb36-X: a = 24.794(2) $\AA$), have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ The structures were refined to the final error indices, R1 = 0.058 and R2 = 0.065 with 637 reflections for Cd32Cs28-X and R1 = 0.086 and R2 = 0.113 with 521 reflections for Cd28Rb36-X for which I > $3\sigma(I)$. In the structure of Cd,sub>32Cs28-X, 16 Cd2+ ions fill the octahedral sites I at the centers of the double six rings (Cd-O = $2.358(8)\AA$ and O-Cd-O = $90.8(3)^{\circ}$ ). The remaining 16 Cd2+ ions occupy site II (Cd-O = $2.194(8)\AA$ and O-Cd-O = $119.7(4)^{\circ})$ and six Cs+ ions occupy site II opposite to the single six-rings in the supercage; each is $2.322\AA$ from the plane of three oxygens (Cs-O = 3.193(13) and O-Cs-O = $73.0(2)^{\circ}).$ Aboutten Cs+ ions are found at site II', $1.974\AA$ into the sodalite cavity from their three oxygen plane (Cs-O = $2.947(8)\AA$ and O-Cs-O = $80.2(3)^{\circ}).$ The remaining 12 Cs+ ions are distributed over site III' (Cs-O = 3.143(9) and O-Cs-O= $59.1(2)^{\circ})$. In the structure of Cd28Rb36-X, 16 Cd2+ ions fill the octahedral sites I at the center of the double-sixrings (Cd-O = 2.349(15) and O-Cd-O = $91.3(5)^{\circ}$ ). Another 12 Cd2+ ions occupy two different II sites (Cd-O = $2.171(18)/2.269(17)\AA$ and O-Cd-O = $119.7(7)/113.2(7)^{\circ}).$ Fifteen Rb+ ions occupy site II (Rb-O = $2.707(17)\AA$ and O-Rb-O = $87.8(5)^{\circ}).$ The remaining 21 Rb+ ions are distributed over site III' (Rb-O = $3.001(16)\AA$ and O-Rb-O = $60.7(4)^{\circ})$. It appears that the smaller and more highly charged Cd2+ ions prefer sites I and Ⅱ in that order, and the larger Rb+ and Cs+ ions, which are less able to balance the anionic charge of the zeolite framework, occupy sites II and II' with the remainder going to the least suitable site in the structure, site III'.The maximum Cs+ and Rb+ ion exchanges were 30% and 39%, respectively. Because these cations are too largeto enter the small cavities and their charge distributions may be unfavorable, cation-sieve effects might appear.

Crystal Structures of Dehydrated Partially $Sr^{2+}$-Exchanged Zeolite X, $Sr_{31}K_{30}Si_{100}A1_{92}O_{384}\;and\;Sr_{8.5}TI_{75}Si_{100}AI_{92}O_{384}$ (부분적으로 스트론튬이온으로 교환되고 탈수된, 제올라이트 X의 결정구조)

  • Kim Mi Jung;Kim Yang;Seff Karl
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 1997
  • The crystal structures of $Sr_{31}K_{30}-X\;(Sr_{31}K_{30}Si_{100}A1_{92}O_{384};\;a=25.169(5) {\AA}$) and $Sr_{8.5}Tl_{75}-X (Sr_{8.5}Tl_{75}Si_{100}A1_{92}O_{384};\;a=25.041(5) {\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group $\=F{d3}\;at\;21(1)^{\circ}C$. Each crystal was prepared by ion exchange in a flowing stream of aqueous $Sr(ClO_4)_2\;and\;(K\;or\;T1)NO_3$ whose mole ratio was 1 : 5 for five days. Vacuum dehydration was done at $360^{\circ}C$ for 2d. Their structures were refined to the final error indices $R_1=0.072\;and\;R_w=0.057$ with 293 reflections, and $R_1= 0.058\;and\;R_w=0.044$ with 351 reflections, for which $I>2{\sigma}(I)$, respectively. In dehydrated $Sr_{31}K_{30}-X,\;all\;Sr^{2+}$ ions and $K^+$ ions are located at five different crystallographic sites. Six-teen $Sr^{2+}$ ions per unit cell are at the centers of the double six-rings (site I), filling that position. The remaining 15 $Sr^{2+}$ ions and 17 $K^+$ ions fill site II in the supercage. These $Sr^{2+}$ and $K^+$ ions are recessed ca $0.45{\AA}\;and\;1.06{\AA}$ into the supercage, respectively, from the plane of three oxygens to which each is bound. ($Sr-O=2.45(1){\AA}\;and\;K-O=2.64(1){\AA}$) Eight $K^+$ ons occupy site III'($K-O=3.09(7){\AA}\;and\;3.11(10){\AA}$) and the remaining five $K^+$ ions occupy another site III'($K-O=2.88(7){\AA}\;and\;2.76(7){\AA}$). In $Sr_{8.5}Tl_{75}-X,\;Sr^{2+}\;and\;Tl^+$ ions also occupy five different crystallographic sites. About 8.5 $Sr^{2+}$ ions are at site I. Fifteen $Tl^+$ ions are at site I' in the sodalite cavities on threefold axes opposite double six-rings: each is $1.68{\AA}$ from the plane of its three oxygens ($T1-O=2.70(2){\AA}$). Together these fill the double six-rings. Another 32 $Tl^+$ ions fill site II opposite single six-rings in the supercage, each being $1.48{\AA}$ from the plane of three oxygens ($T1-O=2.70(1){\AA}$). About 18 $Tl^+$ ions occupy site III in the supercage ($T1-O=2.86(2){\AA}$), and the remaining 10 are found at site III' in the supercage ($T1-O=2.96(4){\AA}$).

  • PDF

Chemical structure and PVC shape after dehydrochlorination of PVC (탈염화수소후의 PVC형상과 화학구조)

  • 신선명;전호석
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.37-42
    • /
    • 2004
  • PVC powder was dehydrochlorinated by hydrothermal reaction at reaction time 0∼5 hr, reaction temperature $200∼250^{\circ}C$ in 0∼2M NaOH solution, and shape and structure of the PVC residue was investigated. The shape of the residue was changed largely according to NaOH concentration. Most of the residue was cohered in the aqueous solution, and many pores less than 10 $\mu\textrm{m}$ were formed on the surface. Dense network structure was well developed inside the residue. On the other hand, the residue in the NaOH solution was not cohered and its shape is roughly spherical. In the IR spectrum of the residue both in water and NaOH solution at $250^{\circ}C$, aromatic rings and absorption peak by C=C double bond were observed. From the results, it was observed that aromatic circle reaction and bridge reaction occured inter and intra molecules.

Hydrated Form of 4-N,N-Dimethylamino-4'-N'-Methyl-Stilbazolium Tosylate, $C_{16}H_{19}N_2(C_7H_7SO_3{\cdot}H_2O)$ (4-N,N-Dimethylamino-4'-N'- Mothy1-stilbazolium tosylate의 수화물)

  • Hong Hyung-Ki;Yoon Choon Sup;Suh Il-Hwan;Lee Jin-Ho;Choi Sung-San;Oh Mi-Ran;Marder Seth R.
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • The crystal structure of the title compound consists of discrete 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium, $C_{16}H_{19}N_2$, and tosylate, $C_7H_7SO_3$, dimer. The 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium molecule has a trans conformation at the central C=C double bond: the dihedral angle between the phenyl and the pyridyl rings is $5.7(2)^{\circ}$ and the whole molecule is planar within $0.138(8){\AA}$. Tosylate molecules display hydrogen-bonded dimers with the O-H...O distances of 2.855(9) and $2.899(8){\AA}$, respectively. The shortest intermolecular contact is the distance $3.10(1){\AA}$ between O(3) and C(16).

  • PDF

Widely Tunable Double-Ring-Resonator Add/Drop Filter (광대역 파장가변 이중 링 공진기 Add/Drop 필터)

  • Lee, Dong-Hyun;Lee, Tae-Hyung;Park, Joon-Oh;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • A widely tunable add/drop filter composed of double ring resonators is implemented with high-index-contrast polymer waveguide. To enhance the productivity, directional couplers are designed to have good fabrication tolerance. The refractive indices of the core and cladding in the 1550 nm wavelength are 1.51 and 1.378, respectively. Drop response in comparison with neighborhood peak gets enhanced by more than 2.9 dB at the wavelength where both rings resonate. This filter can be used to build widely tunable laser diode through hybrid-integration with reflective SOA.

Introduction to European Standard Methods for Physical and Chemical Analysis of Horticultural Substrates (원예용 배지의 물리·화학성 분석을 위한 유럽의 표준방법)

  • Kim, Kye-Hoon;Kang, Ji-Young
    • Horticultural Science & Technology
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Throughout the world, physical and chemical analyses of horticultural substrates are carried out in many different ways at the different laboratories. In Europe, standardization in properties and analytical methods of horticultural substrates has been a topic over the last decades. As a result, the CEN methods as European standard methods for the physical and chemical analyses were introduced and the final draft was reported in 1999 by CEN(Committee for European Standardization). Dry matter and moisture content are analyzed after drying samples at $103^{\circ}C$. Laboratory compacted bulk density is analyzed by determining the weight of sample compacted in the test cylinder with constant volume. Dry bulk density, particle density, total pore space, water volume, air volume and volume shrinkage are determined by saturating, draining and drying the sample using double rings and a sand suction table. pH and EC are analyzed by 1:5(sample:distilled water) extraction method on the basis of volume. Organic matter and ash content are determined after drying and combusting the samples. Now, CEN methods are being regarded almost as European standard methods. Further study needs to be carried out for universal applicability of the CEN methods to all the substrates.

  • PDF

Design of Reconfigurable Resonator with Cross Polarized SRR (교차편파 SRR을 이용한 재구성 공진기 설계)

  • Kim, Jinyoung;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3450-3453
    • /
    • 2013
  • We implemented double-negative metamaterials using cross-polarized split-ring resonators in a microstripline. The split-ring resonators comprised quad ring structures and were connected with the microstripline in series. Four different structures, with the shorted rings in varying locations, were fabricated to demonstrate reconfigurable band-pass characteristics. The effective permittivities and permeabilities were extracted using the Ziolkowski method. Excellent agreement between the developed circuit model and the measurement was observed up to 10 GHz.

Antioxidant Activity of Flavonoids in Plant Origin Food (식물성 식품에 존재하는 Flavonoids의 항산화 활성)

  • 김건희;최미희
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.121-135
    • /
    • 1999
  • Effective synthetic antioxidants such as butylated hydroxyanisole(BHA) and butylated hydroxytoluene(BHT) have been widely used in the food industry, but they are suspected to be toxic and carcinogenic effects. Therefore, the development of safely available natural antioxidants such as ascorbic acid, ${\alpha}$-tocopherol, ${\beta}$-carotene, flavonoids and selenium is essential. In particular, flavonoids, 2-phenyl-benzo-${\alpha}$-pyrones, are polyphenolic compounds that occur ubiquitously in food of plant origin. flavonoids occur in foods generally as O-glycosides with sugars bound usually at the C\ulcorner position. And variations in their heterocyclic ring gibes rise to flavones, flavonols, flavanones, flavanols, catechins, anthocyanidins, chalcone and isoflavones. Vegetables, fruits, and beverages are the main dietary sources of the flavonols, primarily as quercetin, kaempferol, and myricetin and the corresponding flavones, apigenin and luteolin. These flavonoids have biological activity such as antioxidant, anti-inflammatory, antithrombotic, antimutagenic, anticarcimogenic antiallergic and antimicrobial activity effects in vitro and in vivo. Flavonoids posses strong antioxidant activities acting as oxygen radicals scavenger, metal chelators and enzyme inhibitor. The antioxidant activity of flavonoids is determined by their molecular structure and more specially, by the position and degree of hydroxylation of the ring structure. All flavonoids with the 3`, 4`-dihydroxy(ortho-dihydroxy) posses marked antioxidant activity. And antioxidant activity increases with the number of hydroxyl groups substituted on the A-and B-rings. There is as yet no certainty about the effect of the presence of a double bond between C\ulcorner and C\ulcorner on the antioxidant activity of flavonoids.

  • PDF