• 제목/요약/키워드: Double Fed Induction Machine

검색결과 7건 처리시간 0.019초

Performance of Double Fed Induction Machine at Sub- and Super-Synchronous Speed in Wind Energy Conversion System

  • Eskander, Mona N.;Saleh, Mahmoud A.;El-Hagry, Mohsen M.T.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.575-581
    • /
    • 2009
  • In this paper two modes of operating a wound rotor induction machine as a generator at sub-and super-synchronous speeds in wind energy conversion systems are investigated. In the first mode, known as double fed induction generator (DFIG), the rotor circuit is fed from the ac mains via a controlled rectifier and a forced commutated inverter. Adjusting the applied rotor voltage magnitude and phase leads to machine operation as a generator at sub-synchronous speeds. In the second mode, the machine is operated in a slip recovery scheme where the slip energy is fed back to the ac mains via a rectifier and line commutated inverter. This mode is described as double output induction generator (DOIG) leading to increase the efficiency of the wind-to electrical energy conversion system. Simulated results of both modes are presented. Experimental verification of the simulated results are presented for the DOIG mode of operation, showing larger amount of power captured and better power factor when compared to conventional induction generators.

Study and Simulation of RST Regulator Applied to a Double Fed Induction Machine (DFIM)

  • Akkari, N.;Chaghi, A.;Abbdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.308-313
    • /
    • 2008
  • This article proposes the study and simulation of an RST regulator based on a double fed induction machine. The RST polynomial controller can improve the double fed induction machine performance in terms of overshoot, rapidity, cancellation of disturbance, and capacity to maintain a high level of performance. A control law is synthesized using an RST controller. Simulation results indicate that the proposed regulator has better performance response to speed variation, sensitivity to perturbation, and robustness. The designed control algorithm is tested on a simulation matlab code.

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

Fuzzy Control for Back to Back Converter in Double-Fed Induction Machine in Wind Power Generation System

  • Sastrowijoyo, Fajar;Windarko, Novie Ayub;Choi, Jaeho;Chung, Gyo-Bum
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.276-277
    • /
    • 2010
  • This paper describes the control of a utility-connected doublefed induction machine (DFIM) for wind power generation systems (WPGS). Real and reactive powers (PQ) at the stator side of DFIM are strictly controlled to supply the power to the grid without any problems. In this paper the control is realized using Fuzzy PI controller based on the stator-flux orientation control.

  • PDF

Highly Efficient Control of the Doubly Fed Induction Motor

  • Drid, Said;Makouf, Abdesslam;Nait-Said, Mohamed-Said;Tadjine, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.478-484
    • /
    • 2007
  • This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes# controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation and experimental results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

Load Flow Calculation and Short Circuit Faults Transients in Dispersed Generation Systems

  • Hosseini, Seyed Hossein;Shahnia, Farhad;Tizghadam, Saeed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.800-804
    • /
    • 2005
  • Load flow and short circuit fault transients of a power distribution system with wind turbines as dispersed generation units is presented. Usage of renewable energies such as wind is already a small part of total installed power system in medium and low voltage networks. In this paper, a radial power distribution system with wind turbines is simulated using DIgSILENT PowerFactory software for their influence on load flow and short circuit fault transients. Short fault occurring in dispersed generation systems causes some problems for the system and costumers such as fault level increase or the problems of sudden fluctuations in the current, voltage, power and torque of the double fed induction machine utilized in the wind turbines which have been studied and investigated.

  • PDF