• Title/Summary/Keyword: Dot Geometry

Search Result 15, Processing Time 0.026 seconds

Experimental Study on the Influence of Dot Geometry on Ink Transfer in Gravure Printing (망점의 크기와 형상이 잉크 전이에 미치는 영향에 관한 실험적 연구)

  • Han, Kyung-Joon;Song, Hyun-Min;Ahn, Byung-Joon;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1123-1130
    • /
    • 2011
  • The pattern shape engraved on the gravure printing roll is one of the most important factors influencing ink transfer. This study focuses on the relations between dot geometry engraved on gravure printing roll and the ink transfer during the gravure printing process. The influence of dot width on printed patterns will be demonstrated. Results reveal that as the width of a dot on the printing roll increases, the ink transfer rate also increases. But over a certain size of width, surface uniformity began to recede. Therefore, proper dot geometry on the printing roll should be decided to guarantee good printing quality according to printing conditions and expected performance of the electronic devices.

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석)

  • Choi, Ho-Sin;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.43-56
    • /
    • 1992
  • As one of the methods to ameliorate the ray effects which are the nature of anomalous computational effects due to the discretization of the angular variable in discrete ordinates approximations, a computational program, named TWODET (TWO dimensional Discrete Element Transport), has developed in 2 dimensional cartesian coordinates system using the discrete elements method, in which the discrete angle quadratures are steered by the spatially dependent angular fluxes. The results of the TWODET calculation with K-2, L-3 discrete angular quadratures, in the problem of a centrally located, isotropically emitting flat source in an absorbing square, are shown to be more accurate than that of the DOT 4.3 calculation with S-10 full symmetry angular quadratures, in remedy of the ray effect at the edge flux distributions of the square. But the computing time of the TWODET is about 4 times more than that of the DOT 4.3. In the problem of vacuum boundaries just outside of the source region in an absorbing square, the results of the TWODET calculation are shown severely anomalous ray effects, due to the sudden discontinuity between the source and the vacuum, like as the results of the DOT 4.3 calculation. In the probelm of an external source in an absorbing square in which a highly absorbing medium is added, the results of the TWODET calculation with K-3, L-4 show a good ones like as, somewhat more than, that of the DOT 4.3 calculation with S-10.

  • PDF

Geometry Cutting Solution using Vector Dot Product (벡터 내적연산을 이용한 지오메트리 절삭 솔루션)

  • Hwang, Min Sik
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1337-1344
    • /
    • 2016
  • As the visual effect frequently used in movies or animations, special effects are well suited for the creation of buildings or materials' destruction and collapse scenes. With the relevant programs developing technologically, the adoption of a real-time physically based-system makes it possible to realistically express dynamic simulations. In the large scale, the visual expression of such effects of destroying is satisfying enough, but most common programs of those effects fail to maximize visual effect generated with the cutting of small materials. Besides, to perform a heavy simulation process needs high-performance hardware and programs, where high costs would become a serious issue. For this reason, this paper suggests a solution optimized for the effect of small materials-cutting. The progress of each step shows technologies which trace movement with the state of the completion of the character's motions and then cut the material in real-time, finally led to the very realistic visual effect. Besides, using vector inner calculation to follow the motions of object and to realize cutting effect, this study provides an experiment that constructs visual effect for visualization from the basis of mathematical algorithm and it would be certainly as an educational material used for further researches.

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Design for Hybrid Circular Bragg Gratings for a Highly Efficient Quantum-Dot Single-Photon Source

  • Yao, Beimeng;Su, Rongbin;Wei, Yuming;Liu, Zhuojun;Zhao, Tianming;Liu, Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1502-1505
    • /
    • 2018
  • We present a design for hybrid circular Bragg gratings (hCBGs) for efficiently extracting single-photons emitted by InAs quantum dots (QDs) embedded in GaAs. Finite-difference time-domain simulations show that a very high photon collection efficiency (PCE) up to 96% over a 50 nm bandwidth and pronounced Purcell factors up to 19 at cavity resonance are obtained. We also systematically investigate the geometry parameters, including the $SiO_2$ thickness, grating period, gap width and the central disk radius, to improve the device performances. Finally, the PCEs and the Purcell factors of QDs located at different positions of the hCBG are studied, and the results show great robustness against uncertainties in the location of the QD.

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF

The Research Regarding Cheong-Sam Pattern of Fabric Design in the Period of the Republic of China(1912-1949) - Comparison Between Jing Pai and Hai Pai - (중국 민국시대(1912년-1949년)에 나타난 치파오 문양에 관한 연구 - 경파이 치파오와 해파이 치파오의 문양 비교를 중심으로 -)

  • Seo, A-Jeong;Oh, Hee-Kyoung;Kim, Sook-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.3
    • /
    • pp.69-83
    • /
    • 2013
  • Clothes show not just the different social status of people, but the ideology and value of former society through pattern, colour, materials, shapes, etc. The purpose of this article is to fill the academic blank of this part by researching the pattern of fabric design in Jing Pai(Beiing style) and Hai Pai(Shanghai style) cheong-sam during the period of the Republic of China. The contrastive analysis of regional pattern between Jing Pai and Hai Pai cheong-sam expect to provide the theoretical basis for the former fashion designers and scholars. There are three approaches in the article: Data collection method, comparison method and Combining theory with practice method as film. Regarding components of pattern, both Jing Pai and Hai Pai cheong-sam have mostly single or composite pattern like plants. Further the most of Jing Pai cheong-sam pattern is traditional flower pattern. But Haipai cheong-sam patterns have some western flower pattern. Beside that, it have some geometry pattern. Regarding arrangement of the pattern, both cheong-sams have scattered dot style, the border style, and pictures style. But continuous type of Jing Pai cheong-sam is less while Hai Pai cheong-sam is the most. Comparing Jing Pai cheong-sam color of patterns in "Moment in Peking" is unadorned and types are simple as chinese traditional clothes; However, "In the Mood for Love" introduces us various material colors, new types of patterns and extraneous characteristic geometry patterns of Hai Pai cheong-sam. Generally speaking, the main characteristic of Jing Pai cheong-sam is traditional and conservatism. It keeps Chinese traditional pattern and culture to the most extent. However, Hai Pai cheong-sam are confluent and open with absorbed external culture and techniques which are endowed new artistic color.

  • PDF

Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink (패턴 형상, 인쇄 및 건조 조건이 전도성 잉크를 이용한 그라비아 인쇄 결과물의 성능에 미치는 영향)

  • Ahn, Byoung-Joon;Han, Kyung-Joon;Ko, Sung-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • e-Printing is a new manufacturing technology for electronic products and is based on traditional printing technology. The electronic products require a large area to facilitate printing and to be economical. A gravure printing system that supports a roll to roll (R2R) manufacturing process can be used to reduce the cost and to achieve the required accuracy. Many factors such as drying method, drying temperature, tension,-printing velocity, ink viscosity, ink conductivity, pattern accuracy, and dot geometry influence the performance of printed electronics. These factors are closely interrelated. The optimum condition for printing must be determined to enhance the performance of the printed electronics. In this study, lines and areas are printed using a gravure printer with conductive ink under different conditions of the above mentioned factors. The results are analyzed to investigate the influence of various factors on the performance of the printed electronics.