• Title/Summary/Keyword: Dose-rate

Search Result 3,148, Processing Time 0.032 seconds

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

Radiation Monitoring in the Residential Environment: Time Dependencies of Air Dose Rate and 137Cs Inventory

  • Yoshimura, Kazuya;Nakama, Shigeo;Fujiwara, Kenso
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Background: Residential areas have some factors on the external exposure of residents, who usually spend a long time in these areas. Although various survey has been carried out by the government or the research institutions after the Fukushima Daiichi Nuclear Power Plant accident, the mechanism of radiocesium inventory in the terrestrial zone has not been cleared. To better evaluate the radiation environment, this study investigated the temporal changes in air dose rate and 137Cs inventories (Bq/m2) in residential areas and agricultural fields. Materials and Methods: Air dose rate and 137Cs inventories were investigated in residential areas located in an evacuation zone at 5-8 km from the Fukushima Daiichi Nuclear Power Plant. From December 2014 to September 2018, the air dose rate distribution was investigated through a walking survey (backpack survey), which was conducted by operators carrying a γ-ray detector on their backs. Additionally, from December 2014 to January 2021, the 137Cs inventories on paved and permeable grounds were also measured using a portable γ-ray detector. Results and Discussion: In the areas where decontamination was not performed, the air dose rate decreased faster in residential areas than in agricultural fields. Moreover, the 137Cs inventory on paved surfaces decreased with time owing to the horizontal wash-off, while the 137Cs inventory on permeable surfaces decreased dramatically owing to the decontamination activities. Conclusion: These findings suggest that the horizontal wash-off of 137Cs on paved surfaces facilitated the air dose rate decrease in residential areas to a greater extent compared with agricultural fields, in which the air dose rate decreased because of the vertical migration of 137Cs. Results of this study can explain the faster environmental restoration in a residential environment reported by previous studies.

Optimum Dose Combination of External Radiation and High Dose Rate ICR in FIGO IB Uterine Cervical Cancer (병기 IB 자궁경부암의 방사선치료에서 외부방사선치료와 고선량율 강내치료의 최적선량 배합)

  • Lee Sang Wook;Suh Chang Ok;Chung Eun Ji;Kim Woo Cheol;Chang Sei Kyung;Keum Ki Chang;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 1996
  • Purpose : To assess the efficacy of high dose rate - intracavitary radio-therapy (HDR-ICR) in the radiotherapy of FIGO stage IB squamous cell carcinoma of uterine cervix and to determine the optimum dose combination scheme of external radiotherapy and ICR to achieve acceptable local control without severe complication. Materials and Methods : One hundred and sixty two patients with FIGO stage Ib squamous cell carcinoma of uterine cervix who received definitive radiotherapy between May 1979 and December 1990 were retrospectively analyzed. All the patients received external radiotherapy combined with HDR-ICR. External dose of 40-46 Gy in 4.5-5 weeks was given to whole pelvis(median 45 Gy) and ICR dose of 30-39 Gy in 10-13 times was given to the point A. Midline shielding was done after 20-45 Gy of external radiotherapy(median 40 Gy) Summation of external dose Plus ICR dose to the point A range were 64.20-95.00 Gy. and mean was 83.94 Gy. We analyzed the local control rate, survival rate, and late complication rate. Rusults : Initial complete response rate was $99.4\%$ for all patients. Overall 5-year survival rate was $91.1\%$ and 5-year disease free survival rate was $90.9\%$. Local failure rate was $4.9\%$ and distant failure rate was $4.3\%$. Tumor size was the only significant prognostic factor. When tumor size greater than 3cm, 5-rear survival rate was $92.6\%$ and less than 3cm, that was $79.6\%$. Late complication rate was $23.5\%$ with $18.5\%$ of rectal complication and $4.9\%$ of bladder complication. Mean rectal dose summation of external midline dose plus ICR rectal point dose was lower in the patients without rectal complication(74.88 Gr) than those with rectal complication (78.87 Gy). Complication rate was increased with low rate of improvement of survival rate when summation of external midline dose plus point A or point R dose by ICR was greater than 70-75 Gy. Conclusion : The definitive radiation therapy using high dose rate ICR in FIGO stage IB uterine cervical cancer is effective treatment modality with good local control and survival rate without severe complication.

  • PDF

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.

A Study on the status of Routine-Immunization in a Rural Area (한 농촌 면단위지역 영아의 예방접종실태에 관한 조사)

  • Wie, Cha-Hyung;Lee, Bo-Eun
    • Journal of agricultural medicine and community health
    • /
    • v.23 no.2
    • /
    • pp.205-213
    • /
    • 1998
  • In order to find out the status of routine-immunization in a rural area, this study was performed, through analyzing the data which was obtained from the immunization register of infants who was born at Su-Dong myun in 1996 and 1997, managed by Su-dong Myun health subcenter. The results are as follows. 1. B.C.G immunization rate was the highest such as 52.2% within 1 month and next order such 34.8% at 2 month in 1996. In 1997, the highest such as 73.8%, almost all, within 1 month. 2. D.P.T immunization rate in 1996 showed, almost all, the highest at 3 month(79.4%) for 1st dose and at 5 month(78.4%) for 2nd dose. However, the rate for 3rd dose showed the highest at 7 month(51.4%), and next order at 8 month(35.1%) and at 6 month(13.5%). D.P.T immunization rate in 1997, similarly showed the highest at 3 month(81.8%) for 1st dose, at 5 month(71.2%) for 2nd dose and at 7 month(71.4%) for 3rd dose. 3. Hepatitis B immunization rate showed the highest at birth at once or within one week(87.0%) for 1st dose in 1996 and (94.7%) in 1997. The rate for 2nd dose showed the highest at 2 month(51.7%) in 1996 and (50.0%) in 1997, and next order at 1 month(44.8%) in 1996 and (34.4%) in 1997. The rate for 3rd dose showed the highest at 3 month(54.8%) in 1996 and 5 month(54.8%) in 1997, and next order at 5 month(25.8%) in 1996 and at 3 month(26.0%) in 1997. 4. Measles immunization rate was 76.1% in 1996. The rate(76.1%) by the kind of vaccine was the highest with measles-MMR(34.8%), and with MMR(32.6%) and next order with measles(8.7%). The rate by measles immunization time(month) was the highest such as 35.0% at 9 month and 10 month respectively and the rate by MMR was the highest at 16 month(35.5%), and 15 month(22.5%), 13 month (12.9%) and 14 month(12.9%) in next order.

  • PDF

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

Comparative study of dose due to the change of fluoroscopy pulse rate of Epidural Injection treatment time (Epidural Injection시술시 투시율 변화에 따른 선량비교연구)

  • Seo, Jeong-Beom;Oh, Dong-Hoon;Lee, Jeong-Beom;Lee, Jong-Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • To be investigated and measures to reduce the medical exposure of patients to change the Epidural Injection time Fluoroscopy Pulse Rate in this study. Was conducted in 50 patients who underwent surgery Epidural Injection performed by interventional care of Konkuk University Hospital from January to April 2013. The treatment time with the change of Pulse rate, is measured in minutes fluoroscopy time, and measured the area dose (${\mu}Gym^2$) and depth dose (mGy). Using the Image J program, to measure the PSNR and SNR. The fluoroscopy time as a result surgery, there was no significance in the statistical analysis, and depth dose is 34.3 to 34.9%, was reduced from 35.8 to 38.7% the area dose. It is possible to reduce the appropriate Pulse rate, to reduce the dose without statistical analysis significance fluoroscopy time.

  • PDF

18-FDG EXTERNAL RADIATION DOSE RATES IN DIFFERENT BODY REGIONS OF PET-MRI PATIENTS

  • Han, Eunok;Kim, Ssangtae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.157-165
    • /
    • 2013
  • To determine the factors affecting the external radiation dose rates of patients undergoing PET-MRI examinations and to assess the trends of these differences, we measured the changes in the dose rates of $^{18}F$-FDG during a set period of time for each body region. Consistent with theoretical predictions, the dose rate decreased over time in patients undergoing PET-MRI examinations. Furthermore, immediately after the $^{18}F$-FDG injection, the dose rate in the chest region was the highest, followed by the abdominal region, the head region, and the foot region. The dose rate decreased drastically as time passed, by 2.47-fold, from $339.23{\pm}74.70mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection to $102.71{\pm}26.17mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. In the foot region, there were no significant changes over time, from $32.05{\pm}20.23mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection, to $23.89{\pm}9.14mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. The dose rate is dependent on the individual characteristics of the patient, and differed depending on the body region and time point. However, the dose rates were higher in patients who had a lower body weight, shorter stature, fewer urinations, lower fluid intake, and history of diabetes mellitus. To decrease radiation exposure, it is difficult or impossible to change factors inherent to the patient, such as sex, age, height, body weight, obesity, and history of diabetes mellitus. However, factors which can be changed, such as the $^{18}F$-FDG dose, fasting time, fluid intake, number of urinations, and contrast agent dose can be controlled to minimize the external radiation exposure of the patient.

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Calculation of Neutron and Gamma-Ray Flux-to-Dose-Rate Conversion Factors (중성자(中性子) 및 감마선(線)에 대한 선량율(線量率) 환산인자(換算因子) 계산(計算))

  • Kwon, Seog-Guen;Lee, Soo-Yong;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.8-24
    • /
    • 1981
  • This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute(ANSI) N666. These data are used to calculated the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from $2.5{\times}10^{-8}$ to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoetiergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be a useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions.

  • PDF