• Title/Summary/Keyword: Dose optimization

Search Result 231, Processing Time 0.034 seconds

Evaluation of effective dose in panorama, cone beam CT and the usefulness of x-ray protective (치과방사선검사에서 방사선방어용구 사용 전, 후의 유효선량에 대한 평가)

  • Kim, Jae In;Choi, Won Keun;Lee, So La;Lee, Jung Hwa;Lee, Kwan Sub
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The purpose of this study was to measure the absorbed dose and calculate the effective dose for cone beam computed tomography (CBCT) and panorama units and to estimate usefulness of x-ray protective. Rando phantom and glass dosimeters were used for dosimetry. The absorbed doses were measured at 15 organs and 14 remainder from correspond to ICRP 2007 recommendations. The absorbed dose was highest in salivary glands as measured CBCT 2.420mGy, panorama 0.307mGy. Absorbed dose in another organs were high in order of thyroid, brain, skin, esophagus. The effective dose was CBCT 0.100mSv, panorama 0.011mSv and effective dose of panorama was higher than that of CBCT by 10 times. In case of wearing x-ray protective, reducing effective dose of CBCT by 0.066mSv (66%) and panorama by 0.008mSv (72%). Effective dose were reduced by radiological shielding but it needs further optimization studies, where dosimetric data are analyzed in combination with image quality with keep the patients' exposure as low as possible.

  • PDF

Dose Reduction Effect by using Compression Band during Chest CT Examination in Female Patients (여성의 흉부 CT 검사 시 압박밴드 사용에 따른 선량 감소효과)

  • Kim, In Soo;Cho, Yong In
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.445-453
    • /
    • 2021
  • CT scan is reported to have a high risk of cancer due to a relatively high dose among medical radiological examinations. In particular, exposure to radiation to the breast, which is sensitive to radiation, is inevitable during a chest CT scan for female patient. In this study, the dose reduction effect of wearing a compression band during chest CT scans in women was evaluated, and the lifetime attributable risk due to the effective dose exposed during the CT scan was estimated. As a result, when the compression band was used, the effective tube current decreased as the outer perimeter of the chest became smaller, and it was analyzed that the CT dose index and effective dose were also reduced. In addition, the lifetime attributable risk by chest CT scan was found to reduce the cancer risk by 3.2 per 100,000 for all cancers, 0.2 per 100,000 for solid cancer, and 0.8 per 100,000 for breast cancer, based on women in their 30s when using a compression band. It is judged that the risk of cancer can be reduced through the use of appropriate scan parameters and dose optimization measures such as compression bands for future CT examinations.

Patient Specific Quality Assurance of IMRT: Quantitative Approach Using Film Dosimetry and Optimization (강도변조방사선치료의 환자별 정도관리: 필름 선량계 및 최적화법을 이용한 정량적 접근)

  • Shin Kyung Hwan;Park Sung-Yong;Park Dong Hyun;Shin Dongho;Park Dahl;Kim Tae Hyun;Pyo Hongryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Huh Sun Nyung;Kim Il Han;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.176-185
    • /
    • 2005
  • Purpose: Film dosimetry as a part of patient specific intensity modulated radiation therapy quality assurance (IMRT QA) was peformed to develop a new optimization method of film isocenter offset and to then suggest new quantitative criteria for film dosimetry. Materials and Methods: Film dosimetry was peformed on 14 IMRT patients with head and neck cancers. An optimization method for obtaining the local minimum was developed to adjust for the error in the film isocenter offset, which is the largest part of the systemic errors. Results: The adjust value of the film isocenter offset under optimization was 1 mm in 12 patients, while only two patients showed 2 mm translation. The means of absolute average dose difference before and after optimization were 2.36 and $1.56\%$, respectively, and the mean ratios over a $5\%$ tolerance were 9.67 and $2.88\%$. After optimization, the differences in the dose decreased dramatically. A low dose range cutoff (L-Cutoff) has been suggested for clinical application. New quantitative criteria of a ratio of over a $5\%$, but less than $10\%$ tolerance, and for an absolute average dose difference less than $3\%$ have been suggested for the verification of film dosimetry. Conclusion: The new optimization method was effective in adjusting for the film dosimetry error, and the newly quantitative criteria suggested in this research are believed to be sufficiently accurate and clinically useful.

Patient Radiation Exposure Dose Evaluation of Whole Spine Scanography Due to Exposure Direction (Whole Spine Scanography의 검사방향에 따른 환자 선량 평가)

  • Kim, Jung-Su;Seo, Deok-Nam;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Whole spine scanography (WSS) is a radiological examination that exposes the whole body of the individual being examined to x-ray radiation. WSS is often repeated during the treatment period, which results in a much greater radiation exposure than that in routine x-ray examinations. The aims of the current study were to evaluate the patient dose of WSS using computer simulation, image magnification and angulation of phantom image using different patient position. We evaluated the effective dose(ED) of 23 consecutive patients (M : F = 13:10) who underwent WSS, based on the automatic image pasting method for multiple exposure digital radiography. The Anterior-Posterior position(AP) and Posterior-Anterior position( PA) projection EDs were evaluated based on the PC based Monte Carlo simulation. We measured spine transverse process distance and angulation using DICOM measurement. For all patient, the average ED was 0.069 mSv for AP position and 0.0361 mSv for PA position. AP position calculated double exposure then PA position. For male patient, the average ED was 0.089 mSv(AP) and 0.050 mSv(PA). For female patient, the average ED was 0.0431 mSv(AP) and 0.026 mSv(PA). The transverse process of PA spine image measured 5% higher than AP but angulation of transverse process was no significant differences. In clinical practice, just by change the patient position was conformed to reduce the ED of patient. Therefor we need to redefine of protocol for digital radiography such as WSS. whole spine scanography, effective dose, patient exposure dose, exposure direction. protocol optimization.

Effectiveness of a Custom-made Multi Purpose Brachytherapy Phantom (자체 제작한 근접방사선치료용 다목적 팬텀의 유용성 평가)

  • Jang, In-Gi;Lee, Jin-Joung;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • Purpose: To measure the dose for dose optimization at the reference point (A, B) and the critical organ with multi Purpose brachytherapy phantom (MPBP). For this wort the MPBP was custom made, and designed to reconstruct the treatment applicator using multi function applicator (MFA) in the same way as the treatment of patient. Materials and Methods: Dose measurements were made at the reference points (A, B) and the bladder with thermoluminescence dosimeter (TLD) for four patients with tandem and ovoid of uterine cervix cancer using the phantom. In Phantom, Total 20 times of the measurements were made with 5 times a patient. Results: The results of TLD measurements in MPBP phantom showed the relative error ranging from -3.2% to 3.8% at A point, and -1.4% to 4% at B point and 1.3% to 7.15% at the bladder of reference point. Conclusion: The reproducibility of dose measurement under the same condition as the treatment could be achieved using the custom-made MFA in phantom and the dose at the reference point (A, B) and bladder could be analyzed accurately. The measured dose acquired in MPBP can apply for the dose optimization.

  • PDF

Medical Radiation Exposure in Children CT and Dose Reduction (소아 CT 촬영시 방사선 피폭과 저감화 방법)

  • Lee, Jeong-Keun;Jang, Seong-Joo;Jang, Young-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.356-363
    • /
    • 2014
  • Recently pediatric CT has been performed by reduced dose according to tube current modulation이라고, this fact has a possibility more reduce a dose because of strong affect depend on tube current modulation. Almost all MDCT snow show and allow storage of the volume CT dose index (CTDIvol), dose length product (DLP), and effective dose estimations on dose reports, which are essential to assess patient radiation exposure and risks. To decrease these radiation exposure risks, the principles of justification and optimization should be followed. justification means that the examination must be medically indicated and useful. Results is using tube current modulation이라고 tend to the lower kV, the lower effective dose. In case of use a low dose CT protocol, we found a relatively lower effective dose than using tube current modulation. Average effective dose of our studies(brain, chest, abdomen-pelvis) less than 47%, 13.8%, 25.7% of germany reference dose, and 55.7%, 10.2%, 43.6% of UK(United Kingdom) reference dose respectively. when performed examination for reduced dose, we must use tube current modulation and low dose CT protocol including body-weight based tube current adaption.

Study on Variation of Depth Dose Curves by the Strong Magnetic Fields : Monte Carlo Calculation for 10 MV X-rays (강자기장에 의한 깊이선량율(PDD) 변화에 관한 연구 : 10 MV 광자선에 대한 몬테칼로 계산)

  • 정동혁;김진기;김정기;신교철;김기환;김성규;김진영;오영기;지영훈
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.234-239
    • /
    • 2003
  • We examined the variation of percent depth dose (PDD) curves for 10 MV X-rays in the presence of magnetic fields. The EGS4 Monte Carlo code was applied and modified to take account of the effect of electron deflection under magnetic field was used. We defined and tested DI (dose improvement) and DR (dose reduction) to describe variation of PDD curves under various magnetic fields. For a magnetic field of 3 T applied at the depth region of 5-10 cm and field size of 10${\times}$10 $\textrm{cm}^2$, the DI is 1.56 (56% improvement) and DR is 0.68 (32% reduction). We explained the results from the Lorentz law and the concept of electron equilibrium. We suggested that the dose optimization in radiotherapy can be achieved from using the characteristics of dose distributions under magnetic fields.

  • PDF

Optimization of CORVUS Planning System with PRIMART Linac for Intensity Modulated Radiation Therapy

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-sil;Lee, Suk;Suh, Chang-ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.83-85
    • /
    • 2002
  • Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS(NOMOS) inverse planning machine, LANTIS(SIEMENS), PRIMEVIEW and PRIMART Linac(SIEMENS). The optimization of CORVUS planning system with PRIMART is an important work to get an efficient treatment plan. So, we studied two Finite Size Pencil Beams, 1.0 x 1.0 cm$^2$ and 0.5 x 1.0 cm$^2$, and four leaf transmission sets, 5%, 10%, 20%, 33%. We compared the dose distribution of target volume and delivery efficiency of the plan results.

  • PDF

A Preliminary Establishment of Dose Constraints for the Member of Public Taking into Account Multi-unit Nuclear Power Plants in Korea (국내 복수호기 원전 운영을 고려한 일반인 선량제약치 설정에 대한 고찰)

  • Kong, Tae-Young;Choi, Jong-Rack;Son, Jung-Kwon;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • In the 2007 recommendation, the ICRP evolves from the previous process-based system of practices and intervention to the system based on the characteristics of radiation exposure situation. In addition, ICRP recommends the application of source-related dose constraints under the planned exposure situation as a tool for the optimization of protection to workers and the member of public. In this study, the analysis of radioactive effluents from Korean nuclear power plants and the public dose assessment were conducted in reference with the use of dose constraints. Finally, the measure to implement the dose constraints for the member of public was suggested taking into account multi-unit reactors operating at a single site in Korea.

Optimization of Exposure Parameters in Brain Computed Tomography (두부 전산화단층촬영에서 노출 파라미터의 최적화)

  • Ko, Seong-Jin;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.355-362
    • /
    • 2010
  • This study determines a range of CT parameter values in Brain CT which are minimizing patient absorption dose without compromising the image quality and optimal exposure condition. We measured dose and image noise using conventional CT parameters in Brain CT. In additon, we evaluated dose, SNR and PSNR of head phantom images while changing kVp and rotation time. In this study, effectiveness of dose that was achieved from dose reproducible experiments in conventional head CT condition is determined by changing kVp and rotation time. Dose and PSNR is related to low dose-high resolution condition. In conclusion, we suggest that using proposed conditions is effective for imaging to compare with conditions proposed by the manufacturer.